Recent Advances in the CGC

(Helmut's suggestion !)

High $-k_{\perp}$ fluctuations & Pomeron loops in the approach towards saturation

Edmond Iancu

SPhT Saclay & CNRS

Based on: E.I., A. Mueller and S. Munier (hep-ph/041018) E.I., D. Triantafyllopoulos, in preparation ... or About the surprisingly deep connection between High–Energy QCD and Statistical Physics

... or How to go beyond BK–JIMWLK equations

Edmond Iancu

SPhT Saclay & CNRS

Based on: E.I., A. Mueller and S. Munier (hep-ph/041018) E.I., D. Triantafyllopoulos, in preparation

Outline	
---------	--

- Color Dipole Picture
- Color Glass Condensate
- Mean Field Approximation
- Fluctuating pulled fronts
- A new equation
- Conclusions

- High–energy ("small–x") evolution in QCD is a classical stochastic process
 - Color Dipole Picture (Master equation)
 - CGC (Fokker–Planck equation: 'JIMWLK')

Outline	

- Color Dipole Picture
- Color Glass Condensate
- Mean Field Approximation
- Fluctuating pulled fronts
- A new equation
- Conclusions

- High–energy ("small–x") evolution in QCD is a classical stochastic process
 - Color Dipole Picture (Master equation)
 - CGC (Fokker–Planck equation: 'JIMWLK')
 - "Classical": Large separation in rapidity/time scales
 - \implies Effective theory in three (or two) spatial dimensions

Outline

- Color Dipole Picture
- Color Glass Condensate
- Mean Field Approximation
- Fluctuating pulled fronts
- A new equation
- Conclusions

- High–energy ("small–x") evolution in QCD is a classical stochastic process
 - Color Dipole Picture (Master equation)
 - CGC (Fokker–Planck equation: 'JIMWLK')
- Not exactly equivalent ...
 - Color Dipole Picture : Unitarization without saturation
 - CGC (JIMWLK) : Saturation (but no 'pomeron loops')

Outline

- Color Dipole Picture
- Color Glass Condensate
- Mean Field Approximation
- Fluctuating pulled fronts
- A new equation
- Conclusions

- High–energy ("small–x") evolution in QCD is a classical stochastic process
 - Color Dipole Picture (Master equation)
 - CGC (Fokker–Planck equation: 'JIMWLK')
- Not exactly equivalent ...
 - Color Dipole Picture : Unitarization without saturation
 - CGC (JIMWLK) : Saturation (but no 'pomeron loops')
- In the state of the state of
 - MFA should work better at/near saturation (unitarity): $k_{\perp} \lesssim Q_s$ (strong color fields, large occupation numbers)
 - Fluctuations are more important in the dilute regime at high momenta: $k_{\perp} \gg Q_s$

|--|

- Color Dipole Picture
- Color Glass Condensate
- Mean Field Approximation
- Fluctuating pulled fronts
- A new equation
- Conclusions

- High–energy ("small–x") evolution in QCD is a classical stochastic process
 - Color Dipole Picture (Master equation)
 - CGC (Fokker–Planck equation: 'JIMWLK')
- Not exactly equivalent ...
 - Color Dipole Picture : Unitarization without saturation
 - CGC (JIMWLK) : Saturation (but no 'pomeron loops')
- In the state of the state of
- BK equation: the simplest MFA, common to both formalisms
 - Closed, non–linear equation. User friendly !
 - Solutions to BK: unitarity, geometric scaling

One could expect MFA (BK equation) to correctly describe the approach towards saturation ...

Outline

Color Dipole Picture

Color Glass Condensate

Mean Field Approximation

Fluctuating pulled fronts

A new equation

- One could expect MFA (BK equation) to correctly describe the approach towards saturation ...
 - ... but this is actually not true !
 - The growth of the saturation momentum is driven by high- k_{\perp} fluctuations
 - BK evolution violates unitarity <u>at intermediate steps</u> (Mueller & Shoshi, 2004)

- Color Dipole Picture
- Color Glass Condensate
- Mean Field Approximation
- Fluctuating pulled fronts
- A new equation
- Conclusions

- One could expect MFA (BK equation) to correctly describe the approach towards saturation ...
 - ... but this is actually not true !
 - Deep analogy with problems in statistical physics
 - 'Fluctuating pulled fronts'
 - The growth of the saturation momentum is slowed down
 - Geometric scaling is violated

- Color Dipole Picture
- Color Glass Condensate
- Mean Field Approximation
- Fluctuating pulled fronts
- A new equation
- Conclusions

- One could expect MFA (BK equation) to correctly describe the approach towards saturation ...
 - ... but this is actually not true !
 - Deep analogy with problems in statistical physics
 - 'Fluctuating pulled fronts'
 - The growth of the saturation momentum is slowed down
 - Geometric scaling is violated
- The effects of the fluctuations are huge but cannot be easily estimated (except in asymptotic limits: $\alpha_s \to 0, Y \to \infty$)

- Color Dipole Picture
- Color Glass Condensate
- Mean Field Approximation
- Fluctuating pulled fronts
- A new equation
- Conclusions

- One could expect MFA (BK equation) to correctly describe the approach towards saturation ...
 - ... but this is actually not true !
 - Deep analogy with problems in statistical physics
 - 'Fluctuating pulled fronts'
 - The growth of the saturation momentum is slowed down
 - Geometric scaling is violated
- The effects of the fluctuations are huge but cannot be easily estimated (except in asymptotic limits: $\alpha_s \to 0, Y \to \infty$)
- The fluctuations are not correctly described by the JIMWLK, or Balitsky, equations !

- Color Dipole Picture
- Color Glass Condensate
- Mean Field Approximation
- Fluctuating pulled fronts
- A new equation
- Conclusions

- One could expect MFA (BK equation) to correctly describe the approach towards saturation ...
 - ... but this is actually not true !
 - Deep analogy with problems in statistical physics
 - 'Fluctuating pulled fronts'
 - The growth of the saturation momentum is slowed down
 - Geometric scaling is violated
- The effects of the fluctuations are huge but cannot be easily estimated (except in asymptotic limits: $\alpha_s \to 0, Y \to \infty$)
- The fluctuations are not correctly described by the JIMWLK, or Balitsky, equations !
- A Langevin equation for saturation with pomeron loops

- Color Dipole Picture
- Color Glass Condensate
- Mean Field Approximation
- Fluctuating pulled fronts
- A new equation
- Conclusions

Color Dipole Picture (Mueller, 94)

Outline

Color Dipole Picture

Dipole Evolution

Single Scattering

Multiple Scattering

Limitations

Color Glass Condensate

Mean Field Approximation

Fluctuating pulled fronts

A new equation

Conclusions

 \triangleright Leading–log $Y \equiv \ln 1/x$ (BFKL) + Large N_c

$$p(\boldsymbol{x}, \boldsymbol{y} | \boldsymbol{z}) d^2 \boldsymbol{z} dY = \frac{\alpha_s N_c}{\pi} dY \times \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{z} - \boldsymbol{y})^2} \frac{d^2 \boldsymbol{z}}{2\pi}$$

 $P_N(Y) \equiv P_N(\boldsymbol{z}_1, \boldsymbol{z}_2, \dots, \boldsymbol{z}_{N-1} | \boldsymbol{x}_0, \boldsymbol{y}_0, Y)$

 $\frac{\partial P_N}{\partial Y} = -\left[\sum_{i=1}^N \int_{\boldsymbol{z}} p(\boldsymbol{z}_{i-1}, \boldsymbol{z}_i | \boldsymbol{z})\right] P_N + \sum_{i=1}^{N-1} p(\boldsymbol{z}_{i-1}, \boldsymbol{z}_{i+1} | \boldsymbol{z}_i) P_{N-1}$

> Master equation for a classical Markovian process

Dipole–Dipole Scattering

Outline

- Color Dipole Picture
- Dipole Evolution
- Single Scattering
- Multiple Scattering
- Limitations

Color Glass Condensate

Mean Field Approximation

Fluctuating pulled fronts

A new equation

Conclusions

COM frame : $Y_1 = Y_2 = Y/2$, $Y = \ln s$ (rapidity)

• Low energy: Single scattering ($T \ll 1$)

Two gluon exchange between a pair of dipoles

$$T_{\text{one-scatt}}(r, r_0, Y) \approx \alpha_s^2 n^2(r, r_0, Y/2) \sim \alpha_s^2 e^{\omega_{\mathbb{P}} Y}$$

 $\omega_{\mathbb{P}} = (4 \ln 2) \alpha_s N_c / \pi$: BFKL intercept

"One (BFKL) pomeron exchange"

Dipole–Dipole Scattering

Outline

Color Dipole Picture

Dipole Evolution

Single Scattering

- Multiple Scattering
- Limitations

Color Glass Condensate

Mean Field Approximation

Fluctuating pulled fronts

A new equation

Conclusions

COM frame : $Y_1 = Y_2 = Y/2$, $Y = \ln s$ (rapidity)

• Low energy: Single scattering ($T \ll 1$)

Two gluon exchange between a pair of dipoles

$$T_{\text{one-scatt}}(r, r_0, Y) \approx \alpha_s^2 n^2(r, r_0, Y/2) \sim \alpha_s^2 e^{\omega_{\mathbb{P}} Y}$$

 $\omega_{\mathbb{P}} = (4 \ln 2) \alpha_s N_c / \pi$: BFKL intercept

"One (BFKL) pomeron exchange"

Multiple Scattering: Unitarization ...

• High energy: Multiple scattering ($T \equiv 1 - S \sim O(1)$)

Simultaneous scattering between several pairs of dipoles

$$S(Y) = \sum_{N,N'=1}^{\infty} \int d\Gamma_N P_N(Y/2) \int d\Gamma_{N'} P_{N'}(Y/2) \exp\left\{-\sum_{i=1}^N \sum_{j=1}^{N'} T_0(i|j)\right\}$$

Unitarization configuration by configuration : $S_{N \times N'} \leq 1$

"Pomeron loops"

Outline

Color Dipole Picture

Dipole Evolution

Single Scattering

Multiple Scattering

Limitations

Color Glass Condensate

Mean Field Approximation

Fluctuating pulled fronts

A new equation

Multiple Scattering: Unitarization ...

• High energy: Multiple scattering ($T \equiv 1 - S \sim O(1)$)

Simultaneous scattering between several pairs of dipoles

$$S(Y) = \sum_{N,N'=1}^{\infty} \int d\Gamma_N P_N(Y/2) \int d\Gamma_{N'} P_{N'}(Y/2) \exp\left\{-\sum_{i=1}^N \sum_{j=1}^{N'} T_0(i|j)\right\}$$

Unitarization configuration by configuration : $S_{N \times N'} \leq 1$

"Pomeron loops"

Outline

Color Dipole Picture

Dipole Evolution

Single Scattering

Multiple Scattering

Limitations

Color Glass Condensate

Mean Field Approximation

Fluctuating pulled fronts

A new equation

... without Saturation !

Dipole picture neglects saturation effects
 (non–linear effects inside the wavefunction)

$$\alpha_s^2 n^2(Y/2) \sim 1 \text{ but } \alpha_s^2 n(Y/2) \sim \alpha_s^2 e^{\omega_{\mathbb{P}} Y/2} \ll 1$$

▷ Restricted to the COM frame and to a finite energy range:

$$Y_c \lesssim Y \ll 2Y_c \quad \text{with} \quad Y_c \sim \frac{1}{\omega_{\mathbb{P}}} \ln \frac{1}{\alpha_s^2}$$

Outline

Color Dipole Picture

Dipole Evolution

• Single Scattering

Multiple Scattering

Limitations

Color Glass Condensate

Mean Field Approximation

Fluctuating pulled fronts

A new equation

Color Dipole Picture

Color Glass Condensate

Scattering off the CGC

JIMWLK evolution

Mean Field Approximation

Fluctuating pulled fronts

A new equation

Conclusions

The Color Glass Condensate (MV, BK, JIMWLK)

- - High gluon density \longleftrightarrow Strong classical color fields \Rightarrow Non–linear effects leading to saturation ($A \sim 1/g$)

Non-linear evolution : Quantum gluons rescatter off the classical background fields

Color Dipole Picture

Color Glass Condensate

Scattering off the CGC

JIMWLK evolution

Mean Field Approximation

Fluctuating pulled fronts

A new equation

Conclusions

The Color Glass Condensate (MV, BK, JIMWLK)

- - High gluon density \longleftrightarrow Strong classical color fields \Longrightarrow Non–linear effects leading to saturation ($A \sim 1/g$)

No ('pomeron') loops : Sub-dominant so long as the classical fields are relatively strong $(A \gg 1)$

• CGC

Color Dipole Picture

Color Glass Condensate

Scattering off the CGCJIMWLK evolution

Mean Field Approximation

Fluctuating pulled fronts

A new equation

Conclusions

Dipole – CGC Scattering

Dipole frame : the dipole is nearly at rest and unevolved

$$S_Y = \frac{1}{N_c} \left\langle \operatorname{tr} \left(V_{\boldsymbol{x}}^{\dagger} V_{\boldsymbol{y}} \right) \right\rangle_Y = \int \mathrm{D}[A^+] W_Y[A^+] \frac{1}{N_c} \operatorname{tr} \left(V_{\boldsymbol{x}}^{\dagger}[A^+] V_{\boldsymbol{y}}[A^+] \right)$$

 $V_{\boldsymbol{x}}^{\dagger}[A^+] \equiv \operatorname{Pexp}\left(\operatorname{i}g\int dx^- A_a^+(x^-, \boldsymbol{x})t^a\right)$ (Wilson line)

• $W_Y[A^+]$: probability distribution for the classical field A^+

Unitarization via multiple scattering off the classical field

Non–linear evolution in CGC

JIMWLK equation (a functional Fokker–Planck eq.)

Outline

Color Dipole Picture

Color Glass Condensate

Scattering off the CGC

JIMWLK evolution

Mean Field Approximation

Fluctuating pulled fronts

A new equation

Conclusions

Coupled equations for Wilson line correlators: Balitsky eqs.

Dipole–CGC scattering amplitude: T = 1 - S, $S = \frac{1}{N_c} tr(V_x^{\dagger} V_y)$

$$\frac{\partial}{\partial Y} \langle T(\boldsymbol{x}, \boldsymbol{y}) \rangle_{Y} = \frac{\alpha_{s} N_{c}}{\pi} \int_{\boldsymbol{z}} \frac{(\boldsymbol{x} - \boldsymbol{y})^{2}}{(\boldsymbol{x} - \boldsymbol{z})^{2} (\boldsymbol{y} - \boldsymbol{z})^{2}} \\ \langle -T(\boldsymbol{x}, \boldsymbol{y}) + T(\boldsymbol{x}, \boldsymbol{z}) + T(\boldsymbol{z}, \boldsymbol{y}) + \frac{T(\boldsymbol{x}, \boldsymbol{z}) T(\boldsymbol{z}, \boldsymbol{y})}{3 \text{-point ftion}} \rangle_{Y} \\ \frac{\partial}{\partial Y} \xrightarrow{\boldsymbol{z}}_{Y} = \frac{\boldsymbol{z}}{\boldsymbol{z}} + \frac{\boldsymbol{z}}{\boldsymbol{z}}$$

Balitsky–Kovchegov equation

Outline

Color Dipole Picture

Color Glass Condensate

Mean Field Approximation

BK equation

- Traveling wave
- Geometric Scaling

Fluctuating pulled fronts

A new equation

Conclusions

Mean field approximation \implies A closed equation !

 $\left\langle T(\boldsymbol{x}, \boldsymbol{z}) T(\boldsymbol{z}, \boldsymbol{y}) \right\rangle_{Y} \approx \left\langle T(\boldsymbol{x}, \boldsymbol{z}) \right\rangle_{Y} \left\langle T(\boldsymbol{z}, \boldsymbol{y}) \right\rangle_{Y}$

- Incoherent multiple scattering
- ◆ Justified if CGC = Large nucleus (A ≫ 1)
 & not too high energies (Kovchegov, 99)
- Numerous studies (analytic & numerical)
- The same universality class as the F–KPP equation (*Munier, Peschanski, 03*)

 $\partial_Y T(\rho, Y) = \underbrace{\partial_\rho^2 T(\rho, Y)}_{\text{diffusion}} + \underbrace{T(\rho, Y)}_{\text{growth}} \underbrace{-T^2(\rho, Y)}_{\text{recombination}}$ \triangleright A large variety of situations in physics, chemistry, biology Two fixed points: T = 0 (unstable) and T = 1 (stable)

"Traveling wave" : A front propagating into the unstable state

Traveling Wave

T << 1 : Linearized (BFKL) eq. : T ~ r² e^{\u03c0 Y} ~ e^{-(\u03c0 \u03c0 -\u03c0 Y)}
T ~ 1 : The non-linear term saturates the growth at T = 1
T = 1 for r = 1/Q_s(Y) or \u03c0 = \u03c0_s(Y) (\u2200 \u03c0 R_s^2(Y)/Q_0^2)
Q_s^2(Y) \u03c0 e^{\u03c0_0 \u03c0_s Y} : Saturation momentum

Traveling Wave

$$T(r,Y) \equiv T(
ho,Y)$$
 with $ho \equiv \ln \frac{1}{r^2 Q_0^2}$ ("small dipole" = "large ho ")

• $T \ll 1$: Linearized (BFKL) eq. : $T \sim r^{2\gamma} e^{\omega Y} \sim e^{-(\gamma \rho - \omega Y)}$

• $T \sim 1$: The non–linear term saturates the growth at T = 1

•
$$T=1$$
 for $r=1/Q_s(Y)$ or $ho=
ho_s(Y)$ ($\equiv \ln Q_s^2(Y)/Q_0^2$)

 $Q_s^2(Y) \propto \mathrm{e}^{\lambda_0 ar{lpha}_s Y}$: Saturation momentum

Color Dipole Picture

BK equationTraveling wave

A new equation

Conclusions

Geometric Scaling

Fluctuating pulled fronts

Color Glass Condensate

Mean Field Approximation

Geometric Scaling

The shape of the front does not change in the course of the propagation "Geometric scaling"

 $T(\rho, Y) \simeq e^{-\gamma_0(\rho - \rho_s(Y))} \equiv (r^2 Q_s^2(Y))^{\gamma_0}$ for $r \ll 1/Q_s(Y)$

(E.I., Itakura, McLerran, 02; Mueller, Triantafyllopoulos, 02)

A natural explanation for a new scaling law identified in the HERA data for DIS at small-x

(Staśto, Golec-Biernat, and Kwieciński, 2000)

Relevant for the high- p_T suppression observed in d-Au collisions at RHIC

(Kharzeev, Levin, McLerran, 02; E.I., Itakura, Triantafyllopoulos, 04)

The saturation exponent $\lambda_0 = 4.88..$ and the anomalous dimension $\gamma_0 = 0.63...$ are correctly given by the linearized (BFKL) equation ! WHY ?!

Pulled front & Fluctuations

- Pulled fronts
- Saturation exponent
 Front diffusion

A new equation

Conclusions

- The propagation of the front is driven by the growth and spreading of the small perturbations about the unstable state
 - The front is pulled along by its 'leading edge' ($T \ll 1$)
 - Specific to F–KPP equation !
- The propagation is governed by the linearized equation.
- The front properties (λ, γ) are strongly sensitive to small fluctuations !
 - Fluctuations $(\langle T^2 \rangle \langle T \rangle^2)$ are important precisely in the leading edge, where $\langle T \rangle \ll 1$
- Mean field approximation is not reliable !
- Fluctuations due to the discreteness of the particle number

 $T(r, r_0, Y) \approx \alpha_s^2 n(r, r_0, Y)$: Discrete !

 $n(r, r_0, Y) =$ dipole occupation number = 0, 1, 2, ...

Color Dipole Picture

Color Glass Condensate

Mean Field Approximation

Fluctuating pulled fronts

Pulled fronts
 Saturation exponent
 Front diffusion

A new equation

Conclusions

Saturation exponent with fluctuations

• Unitarity ($T \sim 1$) \iff Saturation ($n \sim 1/\alpha_s^2$)

- **BK eq.** : Front propagation is driven by growth in the tail.
- Discrete system : Diffusion of the dipoles in the foremost bin.

There should be at least one dipole per bin for the growth to begin: $n \ge 1$, or $T \gtrsim \alpha_s^2$

$$\partial_Y T(\rho, Y) = D \partial_\rho^2 T(\rho, Y) + \Theta(T - \alpha_s^2) (T - T^2)$$

(Brunnet, Derrida, 97 – finite particle number version of F-KPP)

Color Dipole Picture

Color Glass Condensate

Mean Field Approximation

Fluctuating pulled fronts

Pulled fronts Saturation exponent Front diffusion

A new equation

Conclusions

Saturation exponent with fluctuations

Unitarity $(T \sim 1) \iff$ Saturation $(n \sim 1/\alpha_s^2)$

- **BK eq.** : Front propagation is driven by growth in the tail.
- Discrete system : Diffusion of the dipoles in the foremost bin.

,

The speed of the front (saturation exponent) for $\alpha_s \rightarrow 0$:

$$\lambda_s \equiv \frac{d\rho_s(Y)}{\bar{\alpha}_s \, dY} \approx \lambda_0 \, - \, \frac{D}{\ln^2(1/\alpha_s^2)}$$

 $\lambda_0 \approx 4.88, \quad D \approx 150 \, (!)$

(consistent with Mueller & Shoshi, 2004)

Color Dipole Picture

Color Glass Condensate

Mean Field Approximation

Fluctuating pulled fronts

Saturation exponentFront diffusion

Pulled fronts

A new equation

Conclusions

Front diffusion

The position $\rho_s(Y)$ of the front shows a diffusive wandering around its average value

$$\langle \rho_s(Y) \rangle = \lambda_s \bar{\alpha}_s Y, \quad \langle \rho_s^2 \rangle - \langle \rho_s \rangle^2 = D_{\text{front}} \bar{\alpha}_s Y, \quad D_{\text{front}} \sim \frac{1}{\ln^3(1/\alpha_s^2)}$$

At large *Y*, geometric scaling is badly violated !

Color Dipole Picture

Color Glass Condensate

Mean Field Approximation

Fluctuating pulled fronts

Saturation exponentFront diffusion

Pulled fronts

A new equation

Conclusions

Front diffusion

The position $\rho_s(Y)$ of the front shows a diffusive wandering around its average value

$$\langle \rho_s(Y) \rangle = \lambda_s \bar{\alpha}_s Y, \quad \langle \rho_s^2 \rangle - \langle \rho_s \rangle^2 = D_{\text{front}} \bar{\alpha}_s Y, \quad D_{\text{front}} \sim \frac{1}{\ln^3(1/\alpha_s^2)}$$

Large Y ... but HOW large ??

1

Fluctuations + Saturation = Pomeron loops

A unified description of saturation with fluctuations: CGC for strong fields + Dipole picture in the dilute regime **Color Dipole Picture** $\partial_Y T(\rho, Y) = \underbrace{\partial_\rho^2 T(\rho, Y)}_{\text{diffusion}} + \underbrace{T(\rho, Y)}_{\text{growth}} - \underbrace{T^2(\rho, Y)}_{\text{recomb.}} + \underbrace{\sqrt{\alpha_s^2 T} \eta(\rho, Y)}_{\text{noise}}$ Color Glass Condensate Mean Field Approximation Fluctuating pulled fronts $\langle \eta(\rho, Y) \rangle = 0, \qquad \langle \eta(\rho, Y) \eta(\rho', Y') \rangle = \delta(\rho - \rho') \,\delta(Y - Y')$ A new equation Conclusions Noise term \iff Dipole multiplication in the dilute regime

 $\partial_Y \langle T(r_1)T(r_2) \rangle \sim \alpha_s^2 \langle T(r_1+r_2) \rangle$: Dominant when $T < \alpha_s^2$

Fluctuations + Saturation = Pomeron loops

A unified description of saturation with fluctuations: CGC for strong fields + Dipole picture in the dilute regime **Color Dipole Picture** $\partial_Y T(\rho, Y) = \underbrace{\partial_{\rho}^2 T(\rho, Y)}_{\text{diffusion}} + \underbrace{T(\rho, Y)}_{\text{growth}} - \underbrace{T^2(\rho, Y)}_{\text{recomb.}} + \underbrace{\sqrt{\alpha_s^2 T} \eta(\rho, Y)}_{\text{noise}}$ Color Glass Condensate Mean Field Approximation Fluctuating pulled fronts $\langle \eta(\rho, Y) \rangle = 0, \qquad \langle \eta(\rho, Y) \eta(\rho', Y') \rangle = \delta(\rho - \rho') \,\delta(Y - Y')$ A new equation Conclusions

Splitting + Recombination \implies Pomeron loops

Conclusions

	JIMV
Dutline	The e
Color Dipole Picture	♦ V6
Color Glass Condensate	♦ IC
luctuating pulled fronts	◆ U:

Conclusions

A new equation

- JIMWLK eq. itself is a kind of "mean field approximation"
- The effects of the fluctuations are huge !
 - very slow convergence of λ_s towards λ_0 when $\alpha_s \to 0$
 - lowest–order estimate: $\lambda_s < 0$ unless $\alpha_s < 0.05$!!
 - useless for practical applications
- Urgent need for better estimates & numerics
 - The Langevin equation is well suited for that !
- Exact solutions ??
 - conformal symmetry
- Enriching correspondence with numerous problems in statistical physics, chemistry, biology, ...
 - biological pattern formations, directed percolation, chemical reactions, spreading of epidemics, solar activity (dynamo waves in the sunspots), computer science (digital search trees and data compression) ...