Naked Cronin effect in Au+Au collisions

Alberto Accardi (Iowa State U.)

Hard Probes 2004 - Ericeira, Nov 3-10, 2004

- **Intro:** overview of theory models
- **Glauber-Eikonal model** (pQCD multiple parton scatterings)
 - calibrated in p+p collisions
 - → d+Au @ $\eta = 0 \implies OK!$
- *** Naked Cronin effect** = Au+Au <u>without</u> medium effects
 - onset and magnitude of hadron quenching
 - from RHIC to SPS
- **Remarks** on baryon anomaly and HERMES data

Based on: A.A., M.Gyulassy, PLB 586 (04) 244 & J.Phys.G 30 (04) s969 A.A., nucl-th/0405046

Theoretical models for hA

First act: p+p collisions

- a) <u>CHOOSE</u> the scales: $\mathbf{Q_p} = \mathbf{Q_h} = \sqrt{\mathbf{p_T}^2 + \mathbf{p_0}^2 / 2}$ (or $\mathbf{Q_p} = \mathbf{Q_h} = \sqrt{\mathbf{p_T}^2 + \mathbf{p_0}^2}$)
- b) <u>FIT</u> **K**=**K**(**s**) to the <u>high-p</u>_T tail of the hadron spectrum (χ^2 fit, sensitive to the choice of scales)
- c) <u>FIT</u> intrinsic $\langle k_T^2 \rangle = 0.52 \text{ GeV}^2$ to the <u>moderate-p</u>_T
- d) <u>FIT</u> $\mathbf{p}_0 = \mathbf{p}_0(\mathbf{s})$ to the <u>low-p</u>_T hadron spectrum

Results of the fit

Second act: h+A collision and Cronin effect

$$\frac{\text{Multiple parton scattering Calucci, Treleani '90-'91 & A.A., Treleani '01}{\text{Assuming: generalized collinear factorization factorization only elastic parton scatterings}} = \sum_{n=1}^{\infty} \frac{1}{n!} \int d^2b \int d^2k_1 \cdots d^2k_n}$$

$$\frac{d\sigma^{iA}}{d^2p_t} = \sum_{n=1}^{\infty} \frac{1}{n!} \int d^2b \int d^2k_1 \cdots d^2k_n} \\ \times \frac{d\sigma^{iN}}{d^2k_1} T_A(b) \times \cdots \times \frac{d\sigma^{iN}}{d^2k_n} T_A(b) \ e^{-\sigma^{iN}(p_0)T_A(b)} \times \delta^{(2)}(\sum k_i - p_t) \\ \text{ unitarity factor (probability conserv.)}$$
and:
$$\frac{d\sigma_{pA}^h}{d^2p_t} = \sum_i f_{i/p} \otimes \frac{d\sigma^{iA}}{d^2p_t} \otimes D_{i \rightarrow h} + A \sum_j f_{j/A} \otimes \frac{d\sigma^{jp}}{d^2p_t} \otimes D_{j \rightarrow h}$$

- PA = unitarized multiple parton scatterings on free nucleons
- Spectra in pp coll. as limiting case (high-pT or A->1)
 No extra free parameters

$$\frac{d\sigma^{h}_{pA}}{d^{2}p^{h}_{T}} \xrightarrow{p_{T} \to \infty} A \frac{d\sigma^{h}_{pp}}{d^{2}p^{h}_{T}}$$

h+A : midrapidity pions

Check: centrality dependence at 200 GeV

Glauber-Eikonal model is OK at $\eta=0$

Third act: A+A collision

minimal extension of GE model:

$$\frac{d\sigma^h_{AB}}{d^2bd^2p_t} = \sum_i f_{i/A} \otimes \frac{d\sigma^{\,iB}}{d^2bd^2p_t} \otimes D_{i \to h} + \sum_j f_{j/B} \otimes \frac{d\sigma^{\,jA}}{d^2bd^2p_t} \otimes D_{j \to h}$$

1) Phenix π^0 - $\sqrt{s=200 \text{ GeV}}$ (p₀ = 1.0 GeV ± 10%)

Note: existence of quenching from d+Au data alone - for magnitude we need theory computation

10

2) Phenix π^0 - $\sqrt{s=62.4 \text{ GeV}}$ (p₀ = 0.82 GeV ± 10%)

At 62 GeV we do not have data on d+Au \Rightarrow theory is needed

★ As expected, less suppression in peripheral collisions.
★ Where does quenching begin? theory vs. data is needed
⇒ let's look at PHOBOS h[±] data

Hard Probes 2004

4) WA98 π^0 - $\sqrt{s=17.4 \text{ GeV}}$ (p₀ = 0.59 GeV ± 10%) work in progress reanalysis of p+p reference for WA98 data by D.D'Enterria - PLB'04

indications of:

very small or no quenching in peripheral collisions

Moderate quenching in central collisions

large experimental uncertainty due to p+p normalization

- ✤ 25% systematic error on p+p baseline not shown
- chosen p+p arametrization underestimates data at $p_T \gtrsim 3 \text{ GeV}$
- ★ large theory uncertainty due to K=1.1 log-extrapolation
 - theory curves to be taken as approximate lower limits
 - also, scales are quite low for perturbative computations...

Baryon anomaly, a pervasive theme

in A+A

in h+A

Baryon anomaly is hard to understand in pQCD \Rightarrow Cronin computations only for π^0

Baryon anomaly also in DIS on nuclei!

HERMES E_{lab}=27 GeV - Phys.Lett.B577(03)37

Lessons from HERMES data

* cold nuclear matter effect in clean environment

- hadron formation time
- energy loss

$$E_q = v = E_e - E_{e'} \approx 13 \text{ GeV}$$

on average

$$E_h = z v \approx 2 - 12 \text{ GeV}$$

 $E_h = p_T \approx 2 - 12 \text{ GeV}$

 $E_q = p_T / z$

HERMES kinematics is relevant to RHIC mid-rapidity

Conclusions

 ★ Glauber-Eikonal model describes fairly well Cronin effect in mid-rapidity d+Au on a broad energy range √s=20-200 GeV
 ⇒ baseline computation for Au+Au collisions ("Naked Cronin effect")

- ★ d+Au data vs. theory
 - no initial-state effect at mid-rapidity

★ Au+Au data vs. theory

- quenching at $\sqrt{s}=62.4$ GeV starts at around 40% centrality
- indications moderate quenching in SPS central collisions?

read HERMES papers: nDIS is relevant to RHIC!

★ <u>Future</u>:

- careful check of assumptions
- inclusion of elastic energy loss & coherent multi-scatterings

Hard Probes 2004

The End

Glauber-Eikonal with elastic energy loss

Elastic energy loss: parton energy is conserved, but x is not! $\Rightarrow x \rightarrow x + \Delta x$

negligible at high-p_T

potentially large correction at low-pT

Geometric shadowing & Cronin effect

NOTE: "Dynamical" shadowing NOT included (no CGC, no geom. scaling, no EKS98, ...)

Hermes kinematics

		EMC h		HERMES	
	GeV			h	π, K
$E_{\rm beam}$		100	200	27.5	27.5
$Q^2_{ m min}$	${\rm GeV^2}$	2	2	1	1
W_{\min}^2	${ m GeV^2}$	4	4	4	4
$y_{ m max}$		0.85	0.85	0.85	0.85
x_{\min}		0.02	0.02	0.06	0.02
x_{\max}		1	1	1	1
z_{\min}		0.2	0.2	0.2	0.2
$z_{\rm max}$		1	1	1	1
$\nu_{\rm min}$	GeV	10	30	7	7
$\nu_{\rm max}$	GeV	85	170	23.4	23.4
$E_{h\min}$	GeV	3	3	1.4	2.5
E_{hmax}	GeV	85	170	23.4	15.0

Table 3: Kinematic cuts of the EMC and HERMES experiments.

Mistery no. 1

Hard to understand theoretically

Hard Probes 2004

High $p_T p+p$ reference spectrum vs pQCD (=3.2)

Two highest p_T points (there where the R_{dAu} "suppression" appears) are enhanced w.r.t. NLO (which describes all other rapidities, even y = 3.8 !).

Let's be provocative ... Is there d+Au suppression or (genuine"?) p+p enhancement

Slide by D.D'Enterria, HotQuarks 2004, Taos, NM

High p_T p+p reference spectra vs pQCD (mid-rapidity)

High $p_T p+p$ reference spectra vs pQCD (forward

Good agreement with NLO pQCD

[calculations by W. Vogelsang]

Slide by D.D'Enterria, HotQuarks 2004, Taos, NM

Mistery no. 2: increasing Cronin at $\eta < 0$

Big surprise!

The deuterium is a smallish object, it should cause only a small Cronin! Soft physics? Particle mix? Anti-shadowing of Au partons?

no model to my knowledge can explain this

Centrality dependence at η =0

<u>**If**</u> dynamical shadowing at work, \implies stronger suppression in central

GE model computation

CGC and p+A collisions

For gluon and valence quark production (Dumitru, Gelis, Jalilian Marian; Blaizot et al.)

$$\frac{d\sigma^{d+A\to g(q_V)+X}}{d^2 p_T dy} \propto \frac{1}{p_T^2} \int \frac{d^2 k_T}{(2\pi)^2} f_{g(q_V)}^p(x_1, \vec{p}_T - \vec{k}_T) k_T^2 C(x_2; \vec{k}_T)$$

where $C(x_2; k_T) = \int d^2 r_T e^{i\vec{r}_T \cdot \vec{k}_T} \langle U^{\dagger}(0)U(\vec{r}_T) \rangle_{x_2}$ (fundam. or adjoint Wilson line). If *W* is Gaussian, then Glauber multiscattering interpratation:

$$C(x_2;k_T) = \int d^2 r_T \, e^{i\vec{r}_T \cdot \vec{k}_T} \, e^{\tilde{\sigma}(r_T;b)}$$

