High- p_{\perp} and Jet Measurements by the PHENIX Experiment at RHIC

Prof. Brian A. Cole. Columbia University

 For the PHENIX CollaborationParticular thanks to:
Jiangyong Jia, Saskia Mioduszewski, Mike Tannenbaum for their contributions to this talk.

Also subsequent PHENIX /PHENIX collaborator talks on the subject:

Henner Buesching, David d'Enterria, Barbara Jacak, Klaus Reygers,...

High $-\mathrm{p}_{\mathrm{T}}$ Suppression \rightarrow Quenching $\mathbf{P H}$ 涣ENIX

The one-plot summary:

- Factor of 4-5 suppression of π yield in central (0-10\%) Au-Au
- Little/no suppression in peripheral collisions.
- No suppression in d-Au
\Rightarrow Energy density $=15 \mathrm{GeV} / \mathrm{fm}^{3}$ at $\tau=0.2 \mathrm{fm}$ in central Au+Au
- Our job is done .. NOT!

-What have we learned about jet quenching?
-What do the results tell us about the medium?
- How well do the data constrain "models" of
- How can we better test understanding of
- Jet tomography ????

Energy Loss: Theory

- Look at 2 theoretical analyses applied to data
- Gyulassy, Levai, Vitev formalism
- Wang \& Wang (+) analysis
$>$ with/without absorption of energy from medium

\Rightarrow Good description of the suppression!?

BUT

- The magnitude of su
- The only remaining
- p_{T} dependence of the
- In particular, \approx consta ${ }^{〔}$
- However, the model:
- GLV: higher order cor shadowing, quark/glu
- Wang \& Wang: feedb
- Need more tests ...

PHENIX Detector

Empirical Energy Loss Analysis

$>p-p \pi^{0}$ spectrum well described by

$$
\text { power law: } \frac{d n}{d p_{T}^{2}}=\frac{A}{p_{T}^{n}} \text { with } \mathrm{n}=8.1 \pm 0.1
$$

$>$ Define p_{T} shift，$p_{T}^{S}=p_{T}^{U}-S\left(p_{T}^{U}\right)=\left(1-S_{\text {loss }}\right) p_{T}^{U}$
－$p_{T}{ }^{U}=p_{T}$ with no energy loss
－$p_{T}{ }^{s}=p_{T}$ with energy loss
－$S_{\text {Ioss }}$ is fraction of p_{T} lost
$>$ Then，given $S_{\text {loss }}$ ，

$$
\frac{d n}{d p_{T}^{S}}=\frac{d n}{d p_{T}^{U}} \frac{d p_{T}^{U}}{d p_{T}^{S}}=\left(1-S_{\text {loss }}\right)^{n-2} \frac{A}{\left(p_{T}^{S}\right)^{n-1}}
$$

$>$ Now express in terms of $R_{A A}$ ：

$$
R_{A A}=\frac{\left(1-S_{\text {loss }}\right)^{n-2} A / p_{T}^{n-1}}{A / p_{T}^{n-1}}=\left(1-S_{\text {loss }}\right)^{n-2}
$$

$$
\begin{aligned}
& \text { Iー ー ー ー ー ー - } \\
& S_{l o s s}=1-R_{A A}^{1 /(n-2)}
\end{aligned}
$$

Empirical Energy Loss Applied

$200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$

- Gyulassy, Vitev, Wang: $\Delta E \propto N_{\text {part }}^{2 / 3}$
-1D expansion, simple geometric scaling
\Rightarrow Well reproduced by experimental data.
- More easily seen in $\mathrm{S}_{\text {loss }}\left(\mathrm{N}_{\text {part }}\right)$

Angle wrt Reaction Plane

- How to further test understanding of suppression?
- Another way to vary length of parton path in medium?!
- Change the angle of hadron(parton) relative to non-central collisions.
-Spatial anisotropy $\rightarrow \Delta \mathrm{E}(\phi)$
- Use "elliptic flow" to find blirection.
-Study π^{0} yield vs ϕ, dn $1+2 V_{2} \operatorname{coc}(2 \phi)$

π^{0} Production wrt Reaction Plane PH棌ENIX

- Find reaction plane with PHENIX Beam-Beam counter
- Measure π^{0} yield vs angle relative to reaction plane, $\Delta \phi$
- Correct for measured reaction plane resolution.

Suppression vs $\Delta \phi$

Bands show systematic error range for $3 \mathrm{GeV} / \mathrm{c}$ points

Observe:

> Less suppression in "short" direction.
> More suppression in "long" direction.
$>$ Big variation in peripheral events.
$>\mathrm{p}_{\mathrm{T}}$ dependence ?

Energy loss vs $\Delta \phi$

Basic Geometry Considerations

- Suppose energy loss $\left(\mathrm{S}_{\text {loss }}\right)$ has simple dependence on path length: $\quad S_{\text {loss }}(L)=c L^{m}$
-Then, also assume: $\quad L(\Delta \phi)=L_{0}+L_{2} \cos (2 \Delta \phi)$
- So, in this simple picture $\quad\left(\gamma=L_{2} / L_{0}\right)$:
- $S_{\text {loss }}(\Delta \phi)=c\left[L_{0}+L_{2} \cos (2 \Delta \phi)\right]^{m}=c L_{0}^{m}[1+\gamma \cos (2 \Delta \phi)]^{m}$
- For $m=1$ or γ small,

$$
\left.-S_{\text {loss }}(\Delta \phi) \approx \underline{\left\langle S_{\text {loss }}\right\rangle}\right\rangle[1+\gamma \cos (2 \Delta \phi)]^{m}
$$

- Then
- $S_{\text {loss }}(\Delta \phi)-\left\langle S_{\text {loss }}\right\rangle \approx m\left\langle S_{\text {loss }}\right\rangle \gamma \cos (2 \Delta \phi)+$

$$
\frac{m(m-1)}{2}\left\langle S_{\text {loss }}\right\rangle \gamma^{2} \cos ^{2}(2 \Delta \phi)+\ldots
$$

Energy Loss vs Path Length

PHENIX preliminary

- Use Glauber to obtain ($\rho_{\text {part }}$)

$$
\varepsilon=\frac{\left\langle\mathrm{y}^{2}\right\rangle-\left\langle\mathrm{x}^{2}\right\rangle}{\left\langle\mathrm{y}^{2}\right\rangle+\left\langle\mathrm{x}^{2}\right\rangle}
$$

-Elliptical geom:
$-\gamma=\varepsilon / 2$.

- Test $\mathrm{S}_{\text {loss }} \propto \mathrm{L}, \mathrm{L}^{2}$
- $\mathrm{S}_{\text {loss }} \propto \mathrm{L}$ badly disagrees w/ data.
- $\mathrm{S}_{\text {loss }} \propto \mathrm{L}^{2}$ somewhat better but still not good.

Centrality \& $\Delta \phi$ Dependence

- Study π^{0} yield vs BOTH centrality, $\Delta \phi$
- Use VERY simple geometric picture:
- Obtain $L_{\text {too simple }}\left(N_{\text {part }}, \Delta \phi\right)$ plot vs $S_{\text {loss }}$

- ~ consistent variation with centrality, $\Delta \phi$??
-But, with unexpected dependence on L!
- $S_{\text {loss }}=-0.04 L+0.01 L^{2} ?$ \Rightarrow UNPHYSICAL ??
- Or feedback from medium ... Or

More Realistic Geometry

"Canonical" energy loss

- Initial parton (areal) density

$$
\frac{d n_{\text {color }}}{d A} \propto \frac{d n_{\text {part }}}{d A}
$$

- Intrinsic: $\quad \Delta E \propto L^{2}$
- Assume: $\quad \rho_{\text {color }}\left(\vec{x}_{T}\right)=\rho_{\text {color }}^{\text {init }} \frac{\tau_{0}}{\tau}$
- Calculate: $\int d \vec{l} \rho_{\text {color }}^{\text {init }}(\vec{l}) \frac{l \tau_{0}}{l+\tau_{0}}$

- For simplicity, still only evaluate path from center.
- No consistent description of centrality, $\Delta \phi$ dependence.

> Solid line guides the eye for $S_{\text {loss }}\left(N_{\text {part }}\right)$.

What went wrong ??

- Overlap density grows with centrality.
-All $\Delta \phi$ in centrality bin see same overlap density.
- Centralities spread out on horizontal axis.
- Suppose we divide out central density: $\rho_{\text {part }}(x, y)$
-Works well. Why ???

Participant Density at $(x, y)=(0,0)$

Most Realistic Geometry

- Incorporate path length fluctuations.
- Weight $S_{\text {loss }}$ according to $R_{A A}$
- Doesn't "fix" centrality dependence.
- Even $5 \mathrm{GeV} / \mathrm{c}$ doesn't work ...

PHENIX Jet Studies

- An entire > 1 hour talk by itself.
- Detailed studies of jet properties in p-p, d-Au.
- via two-hadron correlations
- e.g. $\pi^{ \pm}\left(p_{T}>5 \mathrm{GeV}\right)$ - charged by J. Jia, Columbia.

Jet Correlations in Au-Au

- PHENIX charged- charged (preliminary QM2004)
$-2.5<\mathrm{p}_{\mathrm{T}}^{\text {trig }}<4 \mathrm{GeV} / \mathrm{c}, 1.0<\mathrm{p}_{\mathrm{T}}^{\text {assoc }}<2.5 \mathrm{GeV} / \mathrm{c}$
- Additional associated yield in same jet in Au+Au
- But same angular width observed !!!

Stay tuned for final PHENIX Au+Au jet/di-jet results ...

Summary, Conclusions

- High- p_{T} suppression unequivocally established.
- Centrality dependence reproduces simple 1-D expansion scaling prediction.
- But, dependence of suppression on $\Delta \phi$ does not fit "canonical" picture of suppression.
-Requires L2 (without $1 / \tau$) dependence of energy loss?
- Centrality, $\Delta \phi$ variation not consistent using more realistic descriptions of energy loss.
$\Rightarrow \Delta \phi$ variation of suppression $\left(\mathrm{S}_{\text {loss }}\right)$ too rapid compared to centrality variation.
- Except for (overly) simple geometry.
\Rightarrow No growth of "density" with centrality ???
- Simple energy loss picture + geometry is not sufficient to describe yields(ϕ) (or v_{2})

Summary/Conclusions (2)

- Do the data provide room for/evidence of energy absorption from the medium ?
- One can consider such an effect simply a "complication" of jet quenching
\Rightarrow But observation of jets absorbing thermal energy from the medium would be pretty interesting ...
- However, other effects at $\sim 3 \mathrm{GeV} / \mathrm{c}$ may also affect $\Delta \phi$ dependence of hadron yields
\Rightarrow Residual soft flow effects ?
\Rightarrow Recombination effects ?
\Rightarrow Something completely different ?
- Clearly there's something we don't understand.
- "Higher order" effects in energy loss (opacity exp.) ?
- Important: there's still a problem above $5 \mathrm{GeV} / \mathrm{c}$.

Summary/Conclusions(3)

-We are not the first to point out these problems
-Shuryak: Phys. Rev. C: 027902,2002.

- Drees, Feng, Jia: nucl-th/0310044.
- High- p_{T} suppression still not yet a tool for "tomography" ... as this talk demonstrates.
- Have work to do to understand even single hadron suppression. Final version of π^{0} vs $\Delta \phi$ soon...
- Jet produced hadron pair correlation results have potential to blow this field wide open ...
-Iff we can understand medium induced energy loss.
-Radiation becomes a probe of the medium!
- Already starting to see such results/ideas:
\Rightarrow STAR jet η broadening, Shuryak et al shock wave ...

A Closer Look

PH沽ENIX

- Energy loss occurs before fragmentation
-But, energy loss analysis applied to hadron momenta?
- In principle, not a problem because we observe a power-law spectrum!
- Given parton spectrum: $\quad d^{2} n / d k_{T}^{2}$
- Hadron spectrum given by:

$$
\frac{d^{2} n}{d p_{T}^{2}}=\left.\int_{0}^{1} \frac{d z}{z^{2}} D(z) \frac{d^{2} n}{d k_{T}^{2}}\right|_{k_{T}=\frac{p_{T}}{z}}
$$

-But if $d^{2} n / d k_{T}^{2}=A / k_{T}^{n}$
-Then: $\frac{d^{2} n}{d p_{T}^{2}}=\frac{A}{p_{T}^{n}} \int_{0}^{1} \frac{d z}{z^{2}} D(z) z^{n}$
\Rightarrow Power law spectrum begets power law spectrum.
\Rightarrow Our estimated $\mathrm{S}_{\text {loss }} \approx$ applies to parton momenta too.

- Beware: fluctuations reduce observed $\mathrm{S}_{\text {loss }}$ relative to true value by factor ~ 2 (Baier, GLV).

More Realistic Geometry $L^{2}\left(L^{3} / \tau\right)$ test $\mathbf{P H}$ 兴ENIX

- Try different L dependence:

$$
\int d \vec{l} \rho_{\text {color }}^{\text {init }}(\vec{l}) \frac{l^{2} \tau_{0}}{l+\tau_{0}}
$$

-Still not consistent

- Unless we again divide out $\rho_{\text {part }}(x, y)$??

$\mathbf{N}_{\text {part }}$ Dependence of Key Parameters $\mathbf{P H}$ 米ENIX

PHENIX Centrality
(Glauber) analysis:

$$
\varepsilon=\frac{\left\langle y^{2}-x^{2}\right\rangle}{\left\langle y^{2}+x^{2}\right\rangle}
$$

For ellipse, $\varepsilon \approx 2 \gamma$

Observe:

> For more peripheral collisions, $\mathrm{R}_{\mathrm{AA}} \downarrow$ but $\varepsilon \uparrow$
$>\gamma\left\langle S_{\text {loss }}\right\rangle \approx$ constant
$>$ Amplitude of $\mathrm{S}_{\text {loss }}(\Delta \phi)$ nearly constant!
> Pure accident!

A Closer Look

. Energy loss occurs before fragmentation
. But, empirical energy loss applied to hadron momenta!?

- Isn't this a problem? In principle, no.
\Rightarrow Because we observe a power-law spectrum.
. Given a parton spectrum, $d^{2} n / d k_{T}^{2}$
- We obtain a hadron spectrum, $\left.\frac{d^{2} n}{d p_{T}^{2}} \int_{0}^{1} \frac{d z}{z^{2}} D(z) \frac{d^{2} n}{d k_{T}^{2}}\right|_{k_{T}=\frac{p_{T}}{z}}$.
. If $\frac{d^{2} n}{d k_{T}^{2}}=\frac{A}{k_{T}^{n}}$, then $\frac{d^{2} n}{d p_{T}^{2}}=\frac{A}{p_{T}^{n}} \int_{0}^{1} \frac{d z}{z^{2}} D(z) z^{n}$.
. So, if we observe a power-law spectrum,
\Rightarrow parton spectrum should also be power-law
\Rightarrow Our estimated $\mathrm{S}_{\text {loss }}$ applies to parton momenta too.
- What about fluctuations in $\Delta \mathrm{E}, \mathrm{z}$?
- Reduce the apparent $S_{\text {loss }}$ relative to the true
- By a factor of ~ 2 (Baier, GLV).

Reaction Plane Correction

- Reaction plane resolution:
$\sigma=\sqrt{2 \cos \left(\Psi_{B B C_{N}}-\Psi_{B B C_{S}}\right)}$
- Calculate raw V_{2}
- Correct for resolution
- Multiply yield(ϕ) by

$$
\frac{1+v_{2}^{\text {corr }} \cos (2 \Delta \phi)}{1+v_{2}^{r a w} \cos (2 \Delta \phi)}
$$

