e⁺e⁻ production from p-Be to Pb-Au

Harald Appelshäuser

Institut für Kernphysik Universität Frankfurt

for the

CERES Collaboration

Harald Appelshäuser Hard Probes Lisbon 2004

e⁺e⁻ production from p-Be to Pb-Au

- Introduction
- The CERES experiment at the SPS
- Electron pair analysis
- Recent results from run2000 158 AGeV/c Pb-Au

Electromagnetic Radiation

1) formation phase

DY, qg...

2) hot and dense medium

- thermal radiation, medium modifications (ρ)...
- 3) hadron decays $\pi^0 n \omega \phi$

 $\pi^0,\eta,\omega,\phi..$

Penetrating probes ...but $\alpha^2 \sim 10^{-5}$

1) and 3) also in pp, new physics in 2)

Dilepton mass spectrum (schematic)

NA50, NA60 (μ pairs): HMR and IMR:

- J/ψ suppression
- open charm enhancement...
- NA60: + low mass

CERES (e pairs): Low mass region, ρ,ω,φ:

- chiral symmetry restoration
- thermal radiation...

p-induced reactions:

• consistent with expectations from known hadronic sources

• the hadronic cocktail:

our best knowledge of cross sections, form factors, branching ratios... in the absence of new physics, folded with detector acceptance and resolution

HI-induced reactions:

- significant enhancement in the low mass region
- E = 5.0 +/- 0.7(stat) +/- 2.0 (syst) for m_{ee}>0.2 GeV/c²

Pb-Au at 158 AGeV/c:

• *E* = 2.4 +/- 0.2(*stat*) +/- 0.6(*syst*) for m_{ee}>0.2 GeV/c²

w.r.t. HI-cocktail

thermal particle yields $(\phi!)$ and mass dependence of flow

Pb-Au at 158 AGeV/c:

enhanced vacuum- ρ due to $\pi\pi$ -annihilation

- modified ρ-spectral function
- Brown-Rho scaling

calculations: R. Rapp

with TPC (Run1999):

Pb-Au at 40 AGeV/c

E = 5.9 +/- 1.5 (*stat*) +/- 1.2 (*syst*)+/- 1.8 (*decays*)

for m_{ee}> 0.2 GeV/c²

enhanced vacuum- ρ due to $\pi\pi$ -annihilation

- **modified** ρ**-spectral function**
- Brown-Rho scaling

The upgraded CERES experiment

Silicon Drift Detectors

SDD1 and SDD2:

charged particle tracking

vertex reconstruction

Harald Appelshäuser Hard Probes Lisbon 2004

RICH1 and RICH2: electron ID via ring signature field-free operation allows combined mode

Harald Appelshäuser Hard Probes Lisbon 2004

Time Projection Chamber

radial TPC:

- charged particle tracking
- momentum determination
- electron ID via dE/dx

TPC tracking efficiency

p_t ~ 0.1 GeV/c

Harald Appelshäuser Hard Probes Lisbon 2004

Momentum and mass resolution

mass resolution ~4% at ϕ

Electron pair analysis

Data set from Run 2000:

 Pb-Au
 80 AGeV/c
 $\sigma/\sigma_{geo} = 30\%$ 0.5M Events

 Pb-Au
 158 AGeV/c
 $\sigma/\sigma_{geo} = 30\%$ 3.0M Events

 Pb-Au
 158 AGeV/c
 $\sigma/\sigma_{geo} = 8\%$ 30.0M Events

Harald Appelshäuser Hard Probes Lisbon 2004

Electron pair analysis

- 1. charged particle tracking
- 2. electron identification
- 3. rejection of combinatorial background

Charged particle tracking

Angular matching of TPC and SDD tracks

vertex condition suppresses late conversions

Charged particle tracking

Angular matching of TPC and SDD tracks

→ Study of hadronic observables:

Electron identification

Ring signature in RICH:

Energy loss dE/dx in TPC:

$\sigma(dE/dx) / (dE/dx) = 10\%$

Electron identification

e.g. at 1.5 GeV/c: 0.03 (TPC) x 0.003 (RICH) = $10^{-4} \pi$ -efficiency at 0.9 (TPC) x 0.65 (RICH) = 60% e-efficiency

Dominant sources are π^0 **-Dalitz and** γ **-conversions**

- 1. Dalitz recognition:
- Rejection of tracks which form a pair Θ_{ee} < 35 mrad
- Tracks which form a pair m_{ee} < 0.2 GeV/c² excluded from further pairing

...still a large number of tracks remaining from unrecognized π^0 -Dalitz pairs and γ -conversions!

2. on the remaining tracks: kinematical and topological cuts

Harald Appelshäuser Hard Probes Lisbon 2004

2. on the remaining tracks: kinematical and topological cuts

p_t-cut: limits acceptance at low mass and pair p_t

2. on the remaining tracks: kinematical and topological cuts

• V-track signature in TPC:

Invariant mass distributions

~1.8x10⁷ Pb-Au events at 158 AGeV/c:

Invariant mass distributions

~1.8x10⁷ Pb-Au events at 158 AGeV/c:

Electron pair analysis

Signal S:

combination of unlike-sign pairs from the same event

Background B:

- like-sign combinations from the same event
 - (+) same-event correlations (partially) contained
 - (-) if not S>>B, finite statistics contributes
- unlike-sign (or like-sign) combinations from mixed events
 - (+) no statistical limitation
 - (-) normalization, no correlation

Electron pair analysis

combinatorial background

for subtraction: same-event BG for $m_{ee} < 0.2$ GeV/c normalized mixed-event BG for $m_{ee} > 0.2$ GeV/c

Mass spectrum

Run 2000 Pb-Au 158 AGeV/c:

A.Marin (QM04) J.Phys.G30 (2004)

mixed-event background
normalization to cocktail at π⁰-Dalitz

Enhancement for m_{ee} >0.2 GeV/c²:

E = 3.3 +/- 0.3 (*stat*)

... no systematic errors yet!

Mass spectrum

A.Marin (QM04) J.Phys.G30 (2004)

Run 2000 Pb-Au 158 AGeV/c:

 $\langle \langle R \langle S \rangle$

Transverse momentum spectra

m_{ee}<0.2 GeV/c²

0.2<m_{ee}<0.7 GeV/c²

m_{ee}>0.7 GeV/c²

- —— modified ρ-spectral function
 - Brown-Rho scaling
- enhancement located at low pt (known from 95/96)

Harald Appelshäuser Hard Probes Lisbon 2004

Centrality dependence

• pair yield increases stronger than linear with <N_{part}>

Centrality dependence

pair yield increases stronger than linear with <N_{part}>
 most central point confirmed by 2000 data

p_t>0.1 GeV/c mass spectrum

Run 2000 Pb-Au 158 AGeV/c:

- both spectra normalized to π^0 -Dalitz
- spectra agree for m_{ee}>0.7 GeV/c²
- p_t > 0.1 GeV/c adds sensitivity to low masses and pair p_t (m_t>0.2 GeV)

Mass spectrum and hadronic cocktail

Run 2000 Pb-Au 158 AGeV/c:

S. Yurevitch, PhD in prep.

with p_t>0.1 GeV/c selection:

- Enhancement extends to π^0 -peak
- *E* = 5.6 +/- 0.4 (*stat*) for m>0.2 GeV/c²

Mass spectrum and models

Run 2000 Pb-Au 158 AGeV/c:

S. Yurevitch, PhD in prep.

Transverse momentum spectra

m_{ee}<0.2 GeV/c²

0.2<m_{ee}<0.7 GeV/c²

modified ρ-spectral function

Brown-Rho scaling

S. Yurevitch, PhD in preparation

- Enhancement located at low p_t
- Larger enhancement due to improved low p_t acceptance

Harald Appelshäuser Hard Probes Lisbon 2004

Summary and outlook

- preliminary results of e+e- production in 158 AGeV/c Pb-Au from run2000 have been presented
- low mass enhancement with p_t>0.2 GeV/c consistent with highest centrality in 95/96
- larger enhancement observed with p_t>0.1 GeV/c selection

- new data production just finished larger significance expected ($\rho/\omega, \phi$)
- evaluation of efficiency and systematic errors

CERES Collaboration

D. Adamova, G. Agakichiev, D. Antonczyk, A. Andronic, H. Appelshäuser, V. Belaga, J. Bielcikova, P. Braun-Munzinger, O. Busch, A. Castillo, A. Cherlin, S. Damjanovic, T. Dietel, L. Dietrich, A. Drees, S. Esumi, K. Filimonov, K. Fomenko, Z. Fraenkel, C. Garabatos, P. Glässel, G. Hering, J. Holeczek, V. Kushpil, B. Lenkeit, W. Ludolphs, A. Maas, A. Marin, J. Milosevic, A. Milov, D. Miskowiec, R. Ortega, Yu. Panebrattsev, O. Petchenova, V. Petracek, A. Pfeiffer, S. Radomiski, J. Rak, Ravinovich, P. Rehak, W. Schmitz, J. Schukraft, H. Sako, S. Shimansky, S. Sedykh, J. Stachel, M. Sumbera, H. Tilsner, I. Tserruya, G. Tsiledakis, T. Wienold, B. Windelband, J.P. Wessels, J.P. Wurm, W. Xie, S. Yurevich, V. Yurevitch

> NPI ASCR, Rez, Czech Republic GSI Darmstadt, Germany Frankfurt University, Germany Heidelberg University, Germany JINR Dubna, Russia Weizmann Institute, Rehovot, Israel SUNY at Stony Brook, USA CERN, Switzerland BNL, Upton, USA Münster University, Germany MPI Heidelberg, Germany

Mass spectrum

Comparison to 96 data:

96 data: G. Hering, PhD thesis, nucl-ex/0203004

Estimate of combinatorial background

 $p_t > 0.2 \text{ GeV/c}$

