

Medium Effects on Jets and their Energy Dependence

Henner Büsching

Brookhaven National Laboratory for the PHENIX Collaboration

Hard Probes - Ericeira, Nov. 8 2004

Outline

q

Au+Au 200 GeV Probe hot and dense nuclear matter with high pT partons

d+Au 200 GeV

> Au+Au 62.4 GeV

> > Particle species

PHENIX at RHIC

2 central spectrometers

2 forward spectrometers

3 global detectors

<u>Initial Conditions</u> p+p at 200 GeV

Do we understand our p+p data?

x_T scaling at high pT

pQCD works – π^0

Good agreement with NLO pQCD

Factorization theorem:

 $\sigma_{AB \Rightarrow hX} \propto f_{a/A}(x_a, Q^2_a) \otimes f_{b/B}(x_b, Q^2_b) \\ \otimes \sigma_{a \ b \Rightarrow cd} \otimes \mathbf{D}_{b/c}(\mathbf{z}_c, Q^2_c)$

- Constrains Fragmentation
 Function D(Cluster)
- Reference for Au+Au spectra
- Especially good reference if measured together with heavy ion data : reduced syst. errors

Run3 : preliminary

Run2: Phys. Rev. Let 91, 241803 (2003)

pQCD works – direct photons

- Hard processes
 - yield scales with $N_{\rm coll}$
 - reason:
 - small cross section
 - incoherent superposition
- Nuclear Modification Factor R_{AA}

$$R_{AB} = \frac{\left(1/N_{AB}^{evt}\right) d^2 N_{AB}/dydp_{T}}{\left\langle T_{AB} \right\rangle d^2 \sigma_{pp}/dydp_{T}}$$

Nuclear overlap function $T_{AB} = \int d^2 \mathbf{r} T_A(\mathbf{r}) T_B(\mathbf{b} - \mathbf{r})$ Nuclear thickness function $T_A(b) = \int dz \rho_A(b, z)$

from Glauber model

Geometrical factor from nuclear overlap

 $\langle N_{coll}
angle / \sigma_{_{NN}}$

- Hard processes
 - yield scales with $N_{\rm coll}$
 - reason:
 - small cross section
 - incoherent superposition
- Nuclear Modification Factor R_{AA}

 $\mathbf{R}_{AB} = \frac{\left(1/N_{AB}^{\text{evt}}\right) d^2 N_{AB}/dydp_{T}}{\left\langle T_{AB} \right\rangle d^2 \sigma_{pp}/dydp_{T}}$

- Hard processes
 - yield scales with N_{coll}
 - reason:
 - small cross section
 - incoherent superposition
- Nuclear Modification Factor *R*_{AA}

$$R_{AB} = \frac{\left(1/N_{AB}^{evt}\right) d^2 N_{AB}/dydp_{T}}{\left\langle T_{AB} \right\rangle d^2 \sigma_{pp}/dydp_{T}}$$

 In the absence of nuclear effects: R_{AA}=1 at high p_T

- Hard processes
 - yield scales with N_{coll}
 - reason:
 - small cross section
 - incoherent superposition
- Nuclear Modification Factor *R*_{AA}

 $R_{AB} = \frac{\left(1/N_{AB}^{evt}\right) d^2 N_{AB}/dydp_{T}}{\left\langle T_{AB} \right\rangle d^2 \sigma_{pp}/dydp_{T}}$

7.2 GeV muons on various targets scale as α=1.0 in μ+A

- Hard processes •
 - yield scales with $N_{\rm coll}$
 - reason:
 - small cross section
 - incoherent superposition
- Nuclear Modification ightarrowFactor R_{AA}

$$R_{AB} = \frac{\left(1/N_{AB}^{evt}\right) d^2 N_{AB}/dydp_{T}}{\left\langle T_{AB} \right\rangle d^2 \sigma_{pp}/dydp_{T}}$$

Cronin effect: $\alpha(\mathbf{p}_{T}) > 1$ **Multiple scattering of incident partons**

Au+Au 200 GeV

Binary scaling - direct photons

Talk by K. Reygers

Important test of QCD and initial state

- Only interact electromagnetically
- No interaction with medium

Observation:

Pure N_{Coll} scaling relative to pQCD calculation

π^0 -Production

N_{coll}-scaling works in peripheral Au+Au, but strong suppression in central Au+Au

Phys. Rev. Lett. 91, 072301 (2003)

 $R_{AB} = \frac{\left(1/N_{AB}^{evt}\right) d^2 N_{AB}/dydp_{T}}{\left\langle T_{AB} \right\rangle d^2 \sigma_{pp}/dydp_{T}}$

RAA at higher pT ?

Phys. Rev. Lett. 91, 072301 (2003)

Run4 higher statistics

- RAA at higher p_{T ?}
- Run4 higher statistics
- New run3 pp reference
- Reduced stat. errors
- Reach to higher p_T

η Production

- π⁰ and η suppression consistent in magnitude and p_T dependence
- Suppression of factor 5 in central collisions
- Agreement with parton energy loss predictions up to highest pT measured so far

Jet Quenching?

Comparison with model calculations with and without parton energy loss:

- π⁰ suppression described by models with parton energy loss
- Additional nuclear effects needed to describe p_T dependence
- Other explanations not ruled out at this stage

x_T scaling in Au+Au

If high p_T particle production in Au+Au result of hard scattering:

x_T scaling should work

- Assumption: structure and fragmentation functions should scale
- $n(xT, \sqrt{s_{NN}})$ in AuAu:
 - Compare 130 GeV and 200 GeV data
 - Central and peripheral
- π^0 and peripheral charged particles scale
- Central charged particles do not scale

The Control Experiment: d+Au

Phys. Rev. Lett. 91, 072303 (2003)

Kharzeev, Levin, McLerran, hep-ph/0210332

- No suppression in d+Au
- Initial-state effects ruled out as explanation for suppression in Au+Au at mid rapidity

π^{0} 's in d+Au: Data vs. pQCD

 Data well reproduced by

- NLO pQCD calculation, plus
- Phenomenological model of Cronin-Effect, plus
- Shadowing

Levai et al., nucl-th/0306019

Kopeliovich et al., Phys. Rev. Lett. 88, 232303 (2002)

R_{dAu} for different centralities

Kharzeev, Levin, McLerran, hep-ph/0210332 $(N_{part, Au})^{1/2}$ scaling $R_{AA} \approx 0.7$ in central d+Au

η Production in dAu

- Different behavior with increasing centrality in Au+Au and d+Au
 - R_{AuAu} decreases
 - R_{dAu} charged increases
 - $R_{dAu} \pi^0$ increases slightly

62.4 GeV p+p π⁰ Reference

- π^0 data from ISR
- Corrected for (when necessary)
 - hadronic decay
 - direct photons
- Global fit:

 $f(p_T) = A/(e^{a \cdot x^2 + b \cdot x} + x/p_0)^n$

- Fit and data cross-checked by NLO calculation
- ±25% systematic uncertainty

Talk by D. d'Enterria

R_{AA} for π^0 at 62.4 GeV

N_{coll} for peripheral events not yet understood

- Ratios close to unity at $p_{\tau} \sim 2.5$ GeV/c, then decreasing
- Same tendency as 200 GeV Au+Au
- Less suppression at intermediate p_T (compared to 200 GeV)

R_{AA} for π^0 at 62.4 GeV: Predictions

I. Vitev nucl-th/0404052

R_{AA} for π^0 at 62.4 GeV

• Reasonably good agreement (esp. high p_{τ}) within uncertainties • Uncertainty in the p_{τ} shape (esp. low p_{τ}) of p+p reference ...

R_{AA} for Charged Hadrons

- π^0 yield is multiplied by 1.6
- Discrepancy between charged and π^0
- Pions more suppressed than h+/- at intermediate pT
- Large proton contribution up to at least 4 GeV/c

$\pi^{o} R_{AA}$, Central Events,Different \sqrt{s}

- Suppression at 17 GeV and 62.4 GeV similar at medium p_τ
- 62.4 GeV expected lower
- Better reference needed!

WA98, EPJ C 23, 225 (2002)

[new reference compiled by D.d'Enterria nucl-ex/0403055] PHENIX, PRL 88 022301 (2002)

ratios

η to $π^0$ Ratio

•Flat η/π⁰ ratio as function of pT
•No centrality dependence
• η/π⁰ ratio in AuAu consistent with world average

Proton-Scaling

• Proton/anti-protonyield scales with N_{coll} in the range $2 \text{ GeV} < p_{\tau} < 3 \text{ GeV}$

 Why are protons/anti-protons not suppressed?

p/π – Ratio

- Expectation for particle production from jet-fragmentation: p/π less than ≈ 0.25 at high p_T
- p/π+ > 1 at intermediate pT
- less for antiproton (pbar/π- ~ 0.7).
- Weaker centrality dependence than at 200 GeV

Charged Hadron / π⁰

- Unidentified charged hadrons can be measured up to $p_{\tau} = 9$ GeV/c
- Ratio above 5 GeV/c similar for
 - central Au+Au
 - peripheral Au+Au
 - *p+p*
- This implies that p/π ratio goes back to "normal" value at high p_{τ}

A Possible Explanation: Quark Recombination

Fries, et al, nucl-th/0301087 also, Greco, Ko, Levai, nucl-th/0301093 Two competing processes for hadron production

- Jet-Fragmentation in the vacuum
- Recombination of 3 quarks or a quark/anti-quark pair in a densely populated phase space
- Fries et al.
 - In case of thermalized partons at RHIC, fragmentation wins over recombination only above $p_T = 5 \text{ GeV/c}$
 - This explains p/π ratio
 - "Such a phase phase may be appropriately called a QGP"

Talk by J. Velkovska

Summary

- p+p reference well under control at 200 GeV
 - x_T scaling works
 - binary scaling works for direct photons
- suppression of π^0 's and charged hadrons in central Au+Au
 - charged hadrons less suppressed at medium p_T
 - x_T scaling
 - works for pions:
 - hard scattering
 - breaks for charged hadrons in central Au+Au:
 - not only hard scattering
- non-suppression in d+Au
 - suppression in Au+Au must be final-state effect
- suppression also in 62.4 GeV Au+Au
 - evidence for smooth sqrt(s) dependence
 - better reference needed to say more
- high p/π ratio in central Au+Au
 - possibly recombination from thermalized partons

PHENIX-Setup

(pseudorapidity $|\eta| < 0.35$)

- Relevant for this talk:
- Detectors in the central spectrometer arms
 - π^0 via $\pi^0 \rightarrow \gamma \gamma$:
 - Lead scintillator calorimeter (PbSc)
 - Lead glass calorimeter (PbGI)
 - Centrality, vertex
 - Beam Beam Counter (BBC)
 3.0 < |η| < 3.9
 - Zero Degree Calorimeter (ZDC)

PHENIX Detector at Collision Point

- East Carriage (Moved in Place)
- Ring Imaging
 Cerenkov
 Drift Chamber

Beam-Beam Counter Central Magnet

West Carriage

PHENIX in Run 4

	100GeV/u (mb) ⁻¹	Relative to Run-2	31.2GeV/ι (mb) ⁻¹
PHENIX	1370	15x	21.8
STAR	1270	21x	20.7
BRAHMS	560	13x	12.2
PHOBOS	540	7x	12.3

PHENIX in Run 4

• 200 GeV Au+Au data sample:

- 1.5x10⁹ min bias events recorded,
- 241mb⁻¹ integrated luminosity
- 60 times the 24x10⁶ minbias events of Run 2
- 10 times the 24mb⁻¹ sampled in Run 2 by triggered events

• 62.4 GeV Au+Au data sample:

58x106 min bias events recorded

π^0 production in p+p

- Good agreement with NLO pQCD
 - Factorization theorem:

- Constrains Fragmentation Function
- Reference for Au+Au spectra

200 GeV - Run2

π^0 production in p+p

- New run3 pp data
- Reach out to pT > 16 GeV
- Good reference for run3 dAu data – reduced syst. errors
- Cross section determination
 under investigation

200 GeV – Run3

π^{0} Spectra in Au+Au at 200 GeV

Centrality dependence

integrated π^0 yield above $p_T = 4 \text{ GeV}/c$

Direct photons centrality

(h⁺+h⁻)/2 to π^0 ratio in 200GeV Au-Au

- Averaged charged hadrons to π^0 ratios.
- Lines are drawn at $h/\pi^0 = 1.6$, which is predicted by results from past experiments
- At high pT, ratio reaches the asymptotic values of 1.6
- In the intermediate pT region, excess is seen
 - Consistent with the p/π⁰ ratio data showing that more protons are produced
 - Strong centrality dependence

- Initial state effects
 - lead to R_{AA} ≠1 at high p_T
 - but are not related to properties of hot and dense nuclear matter
- Possible initial state effects:
 - Initial state multiple soft scatterings (Cronin effect) R_{AA} > 1
 - Modifications of nuclear structure functions in nuclei (Shadowing) R_{AA} < 1
 - gluon saturation (Color Glass Condensate) *R*_{AA} < 1 ?

- Final state effects
 - dense partonic medium parton energy loss (and recombination)
 - dense hadronic medium hadronic energy loss

- Initial state nuclear effects present in both A+A and N+A collisions
- Final state medium effects only present in A+A collisions

R_{AA} for π⁰ in Central Collisions Different Energies

A.L.S.Angelis PLB 185, 213 (1987) WA98, EPJ C 23, 225 (2002) PHENIX, PRL 88 022301 (2002) PHENIX submitted to PRL, nucl-ex/0304022

- Cronin Effect at lower energies
- Expectation

$$-R_{AA} > 1$$

- Observed
 - factor 4-5 suppresion at 130 and 200 GeV

Explanation ??

π^{0} Spectra at 62.4 GeV

- π^0 data in min. bias, 0-10%, and 10-30%, and 30-60% most central collisions up to p_T = 7GeV/c
- Small systematic uncertainty : 9~12%

Charged hadron reference

- π ,k,p data from ISR are first pp at 62.4 GeV charged pions: 1/2π 1/p_T dN/dp_T (mb GeV/c)⁻² 0 0 0 0 0 1 1 1 1 10 combined to obtain charged hadron data at low \sqrt{s} 10 Charged hadron data are then • interpolated between ISR, UA1 and **PHENIX** to obtain the reference data at √s 62.4 GeV A fit using modified hagedon • functional form is used to obtain parameterization for charged $h^{+} + h^{-}$ hadrons -5 **Right Fig. shows the charged** -6 10 reference/1.6 and compared with π^0
- and Breakstone which is not used in the fit. ($(h^++h^-)/2\pi^0 = 1.6\pm 0.16$ measured in ISR and RHIC)
- Charged hadron have ±25% systematic errors and the upper error increase to about 50% at 7 GeV/c

