Forward and high pt physics at RHIC with BRAHMS

- Stopping in Au+Au at √s=200, 62.4 GeV
- Rapidity dependence of high pt suppression of hadrons at √s=200 GeV
 - Au+Au and d+Au at n=0
 - Au+Au at η=2.2, 3.2
 - d+Au at η= 0 to 3.2 (CGC?)
- Energy dependence of high pt suppression of hadrons at √s=62.4 GeV in Au+Au at η= 0, 1
- Flavor dependence in Au+Au and d+Au
 - Rapidity dependence of particle production in p+p collisions

Excellent Hadron Identification by TOF and RICH

Transparency and beam energy loss at RHIC

Net Protons at 62.4 GeV

Rapidity and energy loss at RHIC

November 8 2004

Ericeira Jens Jørgen Gaardhøje, Niels Bohr Institute

Total relativistic energy

The smoking gun of QGP? Jet Quenching, high pt suppression.

Test: Absence of suppression at midrapidity in d+Au?

What does theory have to say?

HIJING: pQCD (hard) + strings (soft), shadowing, very schematic jet quenching (1992)

Vitev-Gyulassy: pQCD (hard), no soft Cronin $k_{\rm T}$ broadening, shadowing and (GLV) jet quenching

Cassing et al: pQCD (hard) + strings (soft) k_T broadening, shadowing and energy loss (pre-hadronic and hadronic)

Hirano-Nara: pQCD (hard) + hydro (soft) Cronin k_T broadening, shadowing and (GLV) jet quenching

November 8 2004

Ericeira Jens Jørgen Gaardhøje, Niels Bohr Institute

High pt suppression persists at forward rapidity

Large high pt suppression also at forward rapidity.

Longitudinally extended medium, boost invariance, CGC or ...?

Not quantitatively understood.

November 8 2004

Ericeira Jens Jørgen Gaardhøje, Niels Bohr Institute

November 8 2004 Ericeira Jens Jørgen Gaardhøje, Niels Bohr Institute

R_{AuAu} @ 62.4 GeV η=0 and η=0.95

No sudden transition....

15

BRAHMS

Color Glass Condensate The fundamental state of the colliding nuclei?

BRAHMS

Color Glass Condensate in d+Au collisions?

BRAHMS accepted PRL nucl-ex / 0403005

November 8 2004

Ericeira Jens Jørgen Gaardhøje, Niels Bohr Institute

Centrality dependence ... in d+Au

 R_{CP} = RdAu (0-20%) / (60-80%) RdAu (30-50%) / (60-80%) 2 $h^++h^ \frac{h^++h^-}{2}$ $\eta = 0$ $\eta = 2.2$ $\eta = 3.2$ $\eta = 1$ h' h' 1.5 ${\rm R}_{\rm CP}$ 0.50-20%/60-80 30-50%/60-80% 3 4 5 2 3 5 2 3 4 4 5 $p_T [GeV/c]$ $p_T [GeV/c]$ $p_T [GeV/c]$ $p_T [GeV/c]$

Most central to peripheral ratio is most <u>enhanced at</u> <u>midrapidity</u> and most <u>suppressed at forward rapidity</u>

This centrality inversion is consistent with the CGC model.

November 8 2004

Ericeira Jens Jørgen Gaardhøje, Niels Bohr Institute

'High pt' spectra are different for baryons and mesons in Au+Au

BRAHMS

Very different from p+p and e^{++e-}

Hadronic flow or partonic mechanism?

Qualitative agreement with parton recombination models, but need results from run IV for higher pt

How does it look in d+Au ? Identified hadrons at 4 degrees (n=3.2)

R_{dAu} at η=3.2 (min.bias) Baryon meson difference in d+Au

The hadron spectrum for d+Au at $\eta=3.2$

Difference understandable from relative abundances

$h + = 0.8h - (1 + p/\pi + K/\pi +)$

p+p at 200GeV Particle ratios vs rapidity

Proton/pion in p+p at n=3.2 vs. Pythia (vs. 6.303)

November 8 2004

Ericeira Jens Jørgen Gaardhøje, Niels Bohr Institute

Summary

- Large high pt suppression at midrapidity in Au+Au. Gluon radiation energy loss?
- No suppression in d+Au => no initial state effects. Large effect (factor 5).
- Strong high pt suppression in Au+Au persists at forward rapiditiesneed quantitative understanding.
- Reduced high pt suppression in Au+Au at 62.4 GeV
- Decrease in R(dAU) from $\eta=0$ to $\eta=3.2$ and centrality dependence inversion. Consistency with CGC picture.
- Baryon/mesons difference sseen at midrapidty in Au+Au is also present in d+Au at forward rapidity.
- Pythia does not reproduce protons in p+p.
- === > BRAHMS whitepaper on RHIC discoveries: Nucl-ex/0410020, subm. Nucl. Phys. A

Extra material

November 8 2004

Ericeira Jens Jørgen Gaardhøje, Niels Bohr Institute

Is a unified picture emerging?

BRAHMS

New Physics?

BRAHMS Intl. collaboration

I.G. Bearden⁷, D. Beavis¹, C. Besliu¹⁰, Y. Blyakhman⁶, J. Bondorf⁷, J.Brzychczyk⁴, B. Budick⁶, H. Bøggild⁷, C. Chasman¹, C. H. Christensen⁷, P. Christiansen⁷, J.Cibor⁴, R.Debbe¹, J. J. Gaardhøje⁷, M. Germinario^{7,} K. Grotowski⁴, K. Hagel⁸, O. Hansen⁷, A. Holm⁷, A.K. Holme¹², H. Ito¹, E. Jacobsen⁷, A. Jipa¹⁰, J. I. Jordre⁹, F. Jundt², E. Johnson¹¹, C. E. Jørgensen⁷, T. Keutgen⁹, E. J. Kim¹¹, T. Kozik³, T.M.Larsen¹², J. H. Lee¹, Y. K.Lee⁵, G. Løvhøjden¹², Z. Majka³, A. Makeev⁸, B. McBreen¹, M. Murray¹¹, J. Natowitz⁸, B.S.Nielsen⁷, K. Olchanski¹, D. Ouerdane⁷, R.Planeta⁴, F. Rami², D. Roehrich⁹, B. H. Samset¹², S. J. Sanders¹¹, D. Sandberg⁷, I. S. Squra¹⁰, R.A.Sheetz¹, Z.Sosin³, P. Staszel^{7,3}, T.S. Tveter¹², F.Videbæk¹, R. Wada⁸ and A.Wieloch³. ¹Brookhaven National Laboratory, USA ²IReS and Université Louis Pasteur, Strasbourg, France ³Jagiellonian University, Cracow, Poland ⁴Institute of Nuclear Physics, Cracow, Poland ⁵Johns Hopkins University, Baltimore, USA ⁶New York University, USA ⁷Niels Bohr Institute, Blegdamsvej 17, University of Copenhagen, Denmark ⁸Texas A&M University, College Station. USA ⁹University of Bergen, Norway ¹⁰University of Bucharest, Romania ¹¹University of Kansas, Lawrence, USA ¹² University of Oslo Norway

At lower energy the opposite is seen : High pt *enhancement*

5 **CERN-SPS** $\Delta \pi^{\circ}$ 10% central (WA98) $\sigma(A+B)/<N_{Binary}>\sigma(p+p)_{para}$ 4.5 ● h⁻ 5% central (NA49) $(\sqrt{s_{nn}}=17 \text{ GeV})$ 4 ▲ π^{\pm} 8% central Pb+Au (CERES) 3.5 High p_t enhancement 3 seen when compared to p+p scaled by N binary. 2.5 2 **Cronin** effect: 1.5 quark mult scattering 1 0.5 0 0.5 1.5 2.5 3 3.5 2 0 p_{τ} (GeV/c)

November 8 2004

Ericeira Jens Jørgen Gaardhøje, Niels Bohr Institute

p+p reference at 62.4 GeV: a problem

November 8 2004

Transverse spin asymmetry for pions using polarized p+p collisions

First results at high XF

BRAHMS

BRAHMS whitepaper on RHIC discoveries

Conclusion:

There is no doubt that the experiments at RHIC have revealed <u>a plethora of new phenomena that for the most part have come as a</u> <u>surprise</u>. In this sense it is clear that <u>the matter that is</u> <u>created at RHIC differs from anything that has been seen before</u>. What name to give it must await our deeper understanding of this matter.

Nucl-ex/0410020, subm. Nucl. Phys. A

November 8 2004 Ericeira Jens Jørgen Gaardhøje, Niels Bohr Institute