

LGT:

- equilibrium thermodynamics of QCD;
- formulated in terms of basic degrees of freedom: quarks and gluons;
- observables expressed in terms of temperature and chemical potential

LGT:

- equilibrium thermodynamics of QCD;
- formulated in terms of basic degrees of freedom: quarks and gluons;
- observables expressed in terms of temperature and chemical potential

HIC:

- evolution of a dense interacting medium described by QCD;
- observable properties in terms of hadrons, leptons and photons;
- observables parametrized in terms of energy and particle multiplicities

HIC:

- evolution of a dense interacting medium described by QCD;
- observable properties in terms of hadrons, leptons and photons;
- observables parametrized in terms of energy and particle multiplicities

MODELS

LGT:

- equilibrium thermodynamics of QCD;
- formulated in terms of basic degrees of freedom: quarks and gluons;
- observables expressed in terms of temperature and chemical potential

Where lattice calculations do/will contribute to the development of theoretical concepts and the analysis of experimental observables

Where lattice calculations do/will contribute to the development of theoretical concepts and the analysis of experimental observables

Where lattice calculations do/will contribute to the development of theoretical concepts and the analysis of experimental observables

 $T_c, \ \epsilon_c$ phase diagram in the $(T, \ \mu_B)$ -plane; $\mu \simeq 0$: RHIC (LHC) $\mu > 0$: SPS (GSI future) chiral critical point

Where lattice calculations do/will contribute to the development of theoretical concepts and the analysis of experimental observables

EoS

energy density, pressure, velocity of sound,...; susceptibilities (baryon number fluctuations);

strangeness contribution

Where lattice calculations do/will contribute to the development of theoretical concepts and the analysis of

experimental observables

In - medium

charmonium spectroscopy;

light quark bound states;

thermal dilepton rates

hadron properties

heavy quark potential, screening;

F. Karsch, HP2004 – p.2/26

Where lattice calculations do/will contribute to the development of theoretical concepts and the analysis of

experimental observables

short vs. long distance physics

running coupling constant; transport coefficients (??)

Progress in lattice calculations... depends on...

- development of (special purpose) computer hardware
- ٩

Setting a standard: Computational requirements in EoS calculations

only integrated luminosity counts (!), i.e. peak spead of a computer itself is of little significance

a PETAFLOP calculation

Progress in lattice calculations... depends on...

- development of (special purpose) computer hardware
- progress in algorithm development

1987	invention of Hybrid Monte Carlo Algorithm
early '90s	development of various preconditioning schemes
late '90s	new algorithms: polynomial / shifted HMC; multi-boson algorithm

1987 - 2004: gain of factor 15 - 20 from algorithm development

Progress in lattice calculations... depends on...

- development of (special purpose) computer hardware
- progress in algorithm development
- new ideas, new conceptual developments!!!
- 1988/89 multi-parameter Ferrenberg-Swendsen reweighting
 ⇒ accurate location of transition points, scaling analysis
 - 1996 Non-perturbative definition of bulk thermodynamics \Rightarrow integral method for reliable pressure calculations
 - 1999 Maximum Entropy Method (MEM) for QCD
 ⇒ spectral functions, in-medium properties of hadrons
 - 2002 reweighting and Taylor expansion techniques for $\mu > 0$ \Rightarrow QCD phase diagram at finite baryon density

Outlook: Next generation computers for lattice gauge theory

today: APEmille

so far the only dedicated large-scale computer installation used predominantly for QCD thermodynamics exists in Bielefeld: 120 GFlops

RHIC vs. SPS: Running a dedicated machine makes a difference!

Outlook: Next generation computers for lattice gauge theory

QCDOC and apeNEXT

QCD thermodynamics on the next generation of special purpose dedicated QCD computers

installations with (10-20) TFlops peak speed are planned in the USA and Europe

apeNEXT: Next generation of APE computers

BackPlane

apeNEXT: Next generation of APE computers

BackPlane

apeNEXT: Next generation of APE computers

BackPlane

QCDOC: Next generation of Columbia-RIKEN computer

Columbia-RIKEN/BNL-UKQCD Collaboration

2 - node daughter card

64 - node mother board

prototypes exist since 07/2003

QCDOC: Next generation of Columbia-RIKEN computer

Columbia-RIKEN/BNL-UKQCD Collaboration

10/2004: 12288-node machine: \sim 10 TFlops

• first QCDOC machine; built for UKQCD

QCDOC: Next generation of Columbia-RIKEN computer

Columbia-RIKEN/BNL-UKQCD Collaboration

$QCDOC\ computing\ center\ at\ BNL:$

- 10 TFlops machine for RBRC: \sim 12/2004
- 10 TFlops machine for american LGT community: \sim early in 2005
- •... larger installations possible and needed!

Bulk Thermodynamics: What do we (want to) know?

$\mu = 0:$

Properties of transition in $2, \ (2+1)$ -flavor QCD:

crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality, ...

confront resonance gas, quasi-particle gas, high-T pert. theory, HTL-resummation, ... with lattice calculations

$\mu > 0:$

 ${} {\scriptstyle
m extsf{le}} \ T_c(\mu) \ \Leftrightarrow \ T_{
m freeze}(\mu):$

location of the chiral critical point, direct evidence for $1^{
m st}$ order regime; density fluctuations; $T_c(\mu)\equiv T_{
m freeze}$?

Critical behavior in hot and dense matter: phase diagram

crossover vs. phase transition

Critical behavior in hot and dense matter: phase diagram

Critical temperature, equation of state

Critical temperature, equation of state

Critical temperature, equation of state

- $a\simeq 0.2\,fm$ (continuum limit??)
- improved staggered fermions,
 ⇒ flavor symmetry breaking (need even better fermion actions)

 ϵ_c

- $m_{PS}\simeq 770~MeV$ (!!!)
- ullet $V\simeq (4\,{
 m fm})^3$ (thermodynamic limit)

non-zero baryon number density: $\mu > 0$

$$Z(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu}) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu})}$$
$$= \int \mathcal{D}\mathcal{A}\mathcal{D} \det M(\boldsymbol{\mu}) e^{-S_E(\mathbf{V}, \mathbf{T})}$$
$$\uparrow \text{complex fermion determinant;}$$

long standing problem

 \Rightarrow three (partial) solutions for large T, small μ

non-zero baryon number density: $\mu > 0$

$$Z(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu}) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu})}$$
$$= \int \mathcal{D}\mathcal{A}\mathcal{D} \ det \ M(\boldsymbol{\mu}) e^{-S_E(\mathbf{V}, \mathbf{T})}$$
$$\uparrow \text{complex fermion determinant;}$$

long standing problem

- \Rightarrow three (partial) solutions for large T, small μ
- exact evaluation of *det M*: works well on small lattices; requires reweighting
 Z. Fodor, S.D. Katz, JHEP 0203 (2002) 014
- Taylor expansion around $\mu = 0$: works well for small μ ; requires reweighting C. R. Allton et al. (Bielefeld-Swansea), Phys. Rev. D66 (2002) 074507
- imaginary chemical potential: works well for small μ ; requires analytic continuation Ph. deForcrand, O. Philipsen, Nucl. Phys. B642 (2002) 290

analysis of volume dependence of Lee-Yang zeroes for $\mu > 0$

first (exploratory) results on the quark mass dependence of the transition line:

m_q -dependence

(3-flavor QCD, pert. β -function, Taylor expansion)

$$\begin{array}{l} \frac{T_c(\mu)}{T_c(0)} : & 1-0.025(6)(\mu_q/T)^2 \ , \ ma=0.1 \\ & 1-0.114(46)(\mu_q/T)^2 \ , \ ma=0.005 \\ & \text{Bielefeld-Swansea} \\ & (\text{hep-lat/0309116, Lattice 2003}) \end{array}$$

first (exploratory) results on the quark mass dependence of the transition line:

$\begin{array}{l} m_q \mbox{-dependence not confirmed in} \\ \mbox{simulations with imaginary } \mu \\ \mbox{Ph. de Forcrand, O. Philipsen, NP B673 (2003) 170} \end{array}$

m_q -dependence

(3-flavor QCD, pert. β -function, Taylor expansion)

$$\frac{T_c(\mu)}{T_c(0)} : 1 - 0.025(6)(\mu_q/T)^2, \ ma = 0.1$$
$$1 - 0.114(46)(\mu_q/T)^2, \ ma = 0.005$$
Bielefeld-Swansea
(hep-lat/0309116, Lattice 2003)

a systematic analysis of cut-off effects, scaling violations AND volume + truncation effects still needs to be done

non-zero baryon number density: $\mu > 0$

$$egin{aligned} Z(oldsymbol{V},oldsymbol{T},oldsymbol{\mu}) &= \int \mathcal{D}\mathcal{A}\mathcal{D}\psi\mathcal{D}ar{\psi} \ \mathrm{e}^{-S_E(oldsymbol{V},oldsymbol{T},oldsymbol{\mu})} \ &= \int \mathcal{D}\mathcal{A}\mathcal{D} \ det \ M(oldsymbol{\mu}) \ \mathrm{e}^{-S_E(oldsymbol{V},oldsymbol{T})} \end{aligned}$$

 ${T_c(\mu)\over T_c(0)}$:

- $: 1 0.0056(4)(\mu_B/T)^2$
 - deForcrand, Philipsen (imag. μ , pert) $1 - 0.0078(38)(\mu_B/T)^2$

Bielefeld-Swansea

 $(\mathcal{O}(\mu^2)$ reweighting, non-pert)

 $1-0.0032(1)(\mu_B/T)^2$

Fodor,Katz(Lee-Yang zeroes, pert)

non-zero baryon number density: $\mu > 0$

$$egin{aligned} Z(oldsymbol{V},oldsymbol{T},oldsymbol{\mu}) &= \int \mathcal{D}\mathcal{A}\mathcal{D}\psi\mathcal{D}ar{\psi} \ \mathrm{e}^{-S_E(oldsymbol{V},oldsymbol{T},oldsymbol{\mu})} \ &= \int \mathcal{D}\mathcal{A}\mathcal{D} \ det \ M(oldsymbol{\mu}) \ \mathrm{e}^{-S_E(oldsymbol{V},oldsymbol{T})} \end{aligned}$$

current studies of $T_c(\mu)$ are exploratory! uncertainties in scale-determination and systematics of quark mass dependencee

non-zero baryon number density: $\mu > 0$

$$egin{aligned} Z(oldsymbol{V},oldsymbol{T},oldsymbol{\mu}) &= \int \mathcal{D}\mathcal{A}\mathcal{D}\psi\mathcal{D}ar{\psi} \ \mathrm{e}^{-S_E(oldsymbol{V},oldsymbol{T},oldsymbol{\mu})} \ &= \int \mathcal{D}\mathcal{A}\mathcal{D} \ det \ M(oldsymbol{\mu}) \ \mathrm{e}^{-S_E(oldsymbol{V},oldsymbol{T})} \end{aligned}$$

current studies of $T_c(\mu)$ are exploratory! uncertainties in scale-determination and systematics of quark mass dependencee

 $T_c(\mu) \equiv T_{
m freeze}$?

P. Braun-Munzinger, J. Stachel,C. Wetterich, hep-nucl/0311005

Will be answered by LGT calculations

Analyzing the (quasi-particle) structure of HG and QGP phases

Response and correlation functions:

$T \leq T_c$: chiral symmetry restoration

- hadronic resonance gas;
 MEM analysis of thermal masses and widths, π, ρ, \dots
 - (baryon) density fluctuations, strangeness fluctuations, ...

$T > T_c$: deconfinement

- free energies, potentials and screening masses, running coupling at short and large distances,...
- MEM analysis of heavy and light quark bound states, quark and gluon propagators, dilepton and photon rates, ...

Analyzing the (quasi-particle) structure of HG and QGP phases

Response and correlation functions:

$T \leq T_c$: chiral symmetry restoration

- hadronic resonance gas;
 MEM analysis of thermal masses and widths, π , ρ , ...
 - (baryon) density fluctuations, strangeness fluctuations, ...

$T > T_c$: deconfinement

- free energies, potentials and screening masses, running coupling at short and large distances,...
- MEM analysis of heavy and light quark bound states, quark and gluon propagators, dilepton and photon rates, ...

requires light dynamical quarks ⇒ PETAFLOPs era

> meaningful already in quenched QCD → TERAFLOPs era

Thermal meson correlation functions and spectral functions

Thermal correlation functions: 2-point functions which describe propagation of a $\bar{q}q$ -pair

spectral representation of correlator \Rightarrow dilepton and photon rates

spectral representation of

Euclidean correlation functions

spectral representation of thermal photon rate: $\omega = |\vec{p}|$ $\omega \frac{\mathrm{d}^3 R^{\gamma}}{\mathrm{d}^3 p} = \frac{5\alpha}{6\pi^2} \frac{\sigma_V(\omega, \vec{p}, T)}{\omega^2(\mathrm{e}^{\omega/T} - 1)}$

spectral representation of thermal dilepton rate $\frac{\mathrm{d}^4 W}{\mathrm{d}\omega \mathrm{d}^3 p} = \frac{5\alpha^2}{27\pi^2} \frac{\sigma_V(\omega, \vec{p}, T)}{\omega^2(\mathrm{e}^{\omega/T} - 1)}$

$$G_H^{eta}(au,ec{r}) = \int_0^\infty \mathrm{d}\omega \,\int rac{\mathrm{d}^3ec{p}}{(2\pi)^3} \, \sigma_H(\omega,ec{p},T) \, \mathrm{e}^{iec{p}ec{r}} \, rac{\mathrm{cosh}(\omega(au-1/2T))}{\mathrm{sinh}(\omega/2T)}$$

Dilepton rate: HTL and lattice calculations

thermal dilepton rate

$$\frac{\mathrm{d}W}{\mathrm{d}\omega\mathrm{d}^3p} = \frac{5\alpha^2}{27\pi^2} \frac{\sigma_V(\omega,\vec{p},T)}{\omega^2(\mathrm{e}^{\omega/T}-1)}$$

HTL and lattice disagree for $\omega/T \lesssim (3-4)$

● infra-red sensitivity of HTL-calculations ⇔ "massless gluon" cut in HTL-propagator

- ullet infra-red sensitivity of lattice calculations \Leftrightarrow thermodynamic limit, $V
 ightarrow \infty$
- $VT^3 = (N_\sigma/N_\tau)^3 < \infty \Rightarrow$ momentum cut-off: $p/T > 2\pi N_\tau/N_\sigma$

need large lattices to analyze infra-red regime

in future also thermal photon rates

Dilepton rate: HTL and lattice calculations

thermal dilepton rate

$$\frac{\mathrm{d}W}{\mathrm{d}\omega\mathrm{d}^3p} = \frac{5\alpha^2}{27\pi^2} \frac{\sigma_V(\omega,\vec{p},T)}{\omega^2(\mathrm{e}^{\omega/T}-1)}$$

HTL and lattice disagree for $\omega/T \lesssim (3-4)$

● infra-red sensitivity of HTL-calculations ⇔ "massless gluon" cut in HTL-propagator

- ullet infra-red sensitivity of lattice calculations \Leftrightarrow thermodynamic limit, $V
 ightarrow \infty$
- $VT^3 = (N_\sigma/N_\tau)^3 < \infty \Rightarrow$ momentum cut-off: $p/T > 2\pi N_\tau/N_\sigma$

need large lattices to analyze infra-red regime

need $N_ au \sim \mathcal{O}(30)$ AND $N_\sigma \sim 6 \; N_ au$

Heavy quark spectral functions and correlation functions

reconstructed correlation functions above T_c from data below T_c SC, β =6.64, κ =0.1290, G_{recon} from ρ (0.75T_c) 0.75T $(\chi_{c0})^{1.8}$ $G(\tau)/G_{recon}(\tau)$ 1.1T 1.5 1.2 0.9 0.2 0.3 0.5 0.1 0.4 0 τ[fm] 1.1 0.75T 1.1T $G(\tau)/G_{recon}(\tau)$ (J/ψ) 1.5T_c⁶ ⊢ 1 0.9 VC, β =6.64, κ =0.1290, G_{recon} from ρ (0.75T_c) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 τ[fm]

reconstructed spectral functions using the Maximum Entropy Method

Heavy quark spectral functions and correlation functions

reconstructed spectral functions using the Maximum Entropy Method

F. Karsch, HP2004 - p.21/26

Heavy quark spectral functions and correlation functions

reconstructed spectral functions using the Maximum Entropy Method

Heavy quark spectral functions comparison of different approaches

S. Datta et al., hep-lat/0312037

Heavy quark spectral functions comparison of different approaches

S. Datta et al., hep-lat/0312037

M. Asakawa, T. Hatsuda, hep-lat/0308034 S. Dat J/ψ spectral function

Heavy quark spectral functions comparison of different approaches

Fluctuations of the baryon number density ($\mu \geq 0$)

baryon number density fluctuations: (MILC coll., hep-lat/0405029)

$$egin{aligned} &rac{\chi_q}{T^3} = \left(rac{\mathrm{d}^2}{\mathrm{d}(\mu/T)^2}rac{p}{T^4}
ight)_{T \,\,\mathrm{fixed}} \ &= rac{9 \, T}{V} \left(\langle N_B^2
angle - \langle N_B
angle^2
ight) \end{aligned}$$

susceptibilities = integrated correlation functions
= integrated spectral functions

to be studied in event-by-event fluctuations

Fluctuations of the baryon number density ($\mu \geq 0$)

Fluctuations of the baryon number density ($\mu \geq 0$)

Outlook: Next generation lattice calculations

- Thermodynamics of pure gauge theory has been "solved" on (1-10)GFlops computers (1996)
- Thermodynamics of QCD with "still too heavy" quarks has been studied on (10-100) GFlops computers
- Analysis of "continuum and thermodynamic limit" of bulk thermodynamics with light quarks and spectral functions in quenched QCD requires computers with ~10 TFlops peak speed.

Germany: LatFor proposal 2003

http://www.zeuthen.desy.de/latfor/paper.pdf

US: White Paper 2004

http://www-ctp.mit.edu/~negele/WhitePaper.pdf

Studies of spectral functions of light quark bound states below T_c require simulations with light, dynamical quarks on computers with $\gtrsim 100$ TFlops peak speed.

Outlook: projects coming soon...

Thermodynamics on a 10 TFlops computer (5 TFlops sustained)

• T_c , EoS ($\mu = 0$ and $\mu > 0$) with light dynamical quarks: (2+1)-flavor QCD, close to physical m_{π}/m_K ratio; exploring the continuum limit: $a \simeq (0.1 - 0.2)$ fm analyzing the thermodynamic limit: $V \simeq 500$ fm³

> ⇒ lattice sizes up to: $32^3 \times 8$; CPU-time: ~ 5 TFlops-years ($\mu = 0$) ~ 5 TFlops-years ($\mu > 0$)

In-medium hadron properties, charmonium, dilepton rates: quenched QCD on fine lattices (a ~ 0.02 fm); analyzing light quark mesons with improved fermion formulations; exploring infra-red sensitivity of dilepton rates; analyzing charmonium spectra;

 \Rightarrow lattice sizes up to: $128^3 \times 32$; CPU-time: ~ 3 TFlops-years

Outlook: projects on future machines...

Thermodynamics on Petaflops computers

(exploratory studies already on up-coming TFlops computers)

In-medium properties of light quark bound states: QCD with light, dynamical quarks on fine lattices become possible; mass shifts and modification of widths below T_c

finite density QCD at low temperature: temperatures around $T \sim 0.5 T_c$ should be accessible

transport properties:

calculation of "gluonic correlator" (energy momentum tensor) should become possible; spectral functions in the $\omega \to 0$ limit may become accessible