

Deconfinement and Quarkonium Suppression

- Deconfinement, screening and asymptotic freedom
 - deconfinement is density driven
- Heavy quark free energies
 - screening sets in at short distances; 1/r still dominant scale
- Potential models for quarkonium
 - dissociation may spoil sequential suppression pattern
- Spectral functions
 - ${}_{m s}$ (directly produced) $J/\psi\,$ exist well above T_c
- Charmonium in heavy ion collisions
 - sequential suppression pattern may be the smoking gun

Deconfinement \Rightarrow screening \Rightarrow quarkonium suppression

The Matsui-Satz argument:

• deconfinement \Rightarrow screening

 \Rightarrow no heavy quark bound states in a QGP

• heavy $q\bar{q}$ -pairs are rare states in a QGP \Rightarrow dissolved pairs never recombine

Deconfinement \Rightarrow screening \Rightarrow quarkonium suppression

The Matsui-Satz argument:

• deconfinement \Rightarrow screening

 \Rightarrow no heavy quark bound states in a QGP

• heavy $q\bar{q}$ -pairs are rare states in a QGP \Rightarrow dissolved pairs never recombine

Deconfinement

and asymptotic freedom

asymptotic freedom \Rightarrow deconfinement (the original concept):

- N. Cabibbo, G. Parisi, Exponential Hadronic Spectrum and Quark Liberation, PL B59 (1975) 67;
 J.C. Collins, M.J. Perry, Superdense Matter: Neutrons and asymptotically free quarks? PRL 34 (1975) 1353
 - deconfinement is a consequence of asymptotic freedom
 - deconfinement \Leftrightarrow liberation of many new degrees of freedom, asymptotically free $q\bar{q} + g$ gas
 - deconfinement is density driven

↑ evidence from LGT

Confinement and deconfinement

confinement

- stick together, find a comfortable separation
- controlled by confinement potential

 $V(r)=-rac{4}{3}rac{lpha(r)}{r}+\sigma r$

deconfinement

- free floating in the croud
- average distance always smaller than **r**_{af}:

$$r_{af} = \sqrt{rac{4}{3} rac{lpha(r)}{\sigma}} ~\simeq~ 0.25\,{
m fm}$$

 $m_{PS} \simeq 140 \; MeV: \; T_c \simeq 175 \; MeV$ $m_{GB} \simeq 1.5 \; GeV: \; T_c \simeq 265 \; MeV$ $(m_{PS} = \infty)$

lightest masses apparently do not control the transition

 $m_{PS} \simeq 140 \; MeV: \; T_c \simeq 175 \; MeV$ $m_{GB} \simeq 1.5 \; GeV: \; T_c \simeq 265 \; MeV$ $(m_{PS} = \infty)$

lightest masses apparently do not control the transition

$$n_f = 2: \ \epsilon_c \simeq (6 \pm 2) \ T_c^4 \ \simeq (0.3 - 1.3) \ GeV/fm^3 \ n_f = 0: \ \epsilon_c \simeq (0.5 - 1) \ T_c^4 \ \simeq (0.3 - 0.7) \ GeV/fm^3$$

change in ϵ_c/T_c^4 compensated by shift in T_c transition sets in at similar energy (or parton) densities \Rightarrow percolation

 $m_{PS} \simeq 140 \; MeV: \; T_c \simeq 175 \; MeV$

5 p/T⁴ p_{SB}/T 4 3 3 flavour 2 flavour 2 flavour pure gauge 1 T [MeV] 0 200 300 100 400 500 600 parton density (ideal gas): $n \equiv p/T$ Debye screening radius: $r_D \sim 1/g(T) \sqrt{n/T}$ $\sim 1/g T$

rapid change across
$$T_c$$
: $r_D/T \sim 1/g(T)\sqrt{p/T^4}$

 $m_{PS} \simeq 140 \; MeV: \; T_c \simeq 175 \; MeV$

5 p/T⁴ p_{SB}/1 4 3 flavour 2 flavour 2 flavour pure gauge 1 T [MeV] 0 200 300 100 400 500 600

parton density (ideal gas): $n\equiv p/T$ Debye screening radius: $r_D\sim 1/g(T)\sqrt{n/T}$

constant parton density in an ideal gas:

$$rac{T(m_{\pi}=\infty)}{T(m_{\pi}=0)} = \left(1+rac{21}{4}rac{n_f}{N_c^2-1}
ight)^{1/3}\simeq 1.3-1.5$$

change in free energy due to presence of external sources

L.G. McLerran, B. Svetitsky, Phys. Rev. D24 (1981) 450

$$\mathrm{e}^{-F_{ar{q}q}(r,T)/T} \;=\; rac{1}{9} \langle \mathrm{Tr} L_{ec{x}} \mathrm{Tr} L_{ec{0}}^{\dagger}
angle$$

2.5 2 singlet free energy 1.98 1.5 in 2-flavor QCD 1 $(m_a/T = 0.4)$ 0.5 0 O.Kaczmarek, F. Zantow; -0.5 similar: -1 0.5 1.5 1 P.Petreczky, K. Petrov

change in free energy due to presence of external sources

L.G. McLerran, B. Svetitsky, Phys. Rev. D24 (1981) 450

$${
m e}^{-F_{ar q q}(r,T)/T} \;=\; rac{1}{9} \langle {
m Tr} L_{ec x} {
m Tr} L_{ec 0}^{\dagger}
angle$$

asymptotic freedom, screening, string breaking

change in free energy due to presence of external sources

L.G. McLerran, B. Svetitsky, Phys. Rev. D24 (1981) 450

$$\mathrm{e}^{-F_{ar{q}q}(r,T)/T} \;=\; rac{1}{9} \langle \mathrm{Tr} L_{ec{x}} \mathrm{Tr} L_{ec{0}}^{\dagger}
angle$$

asymptotic freedom, screening, string breaking

 $T \lesssim 0.75 \; T_c$: $F(R,T)/\sigma^{1/2}$ 2.5 string breaking 2 $F(r,T) \simeq V(r,T=0)$ singlet free energy 1.98 1.5 in 2-flavor QCD $T \simeq T_c$: 1 screening sets in at $(m_a/T = 0.4)$ 0.5 $r \simeq 0.3$ fm; 0 O.Kaczmarek, F. Zantow; significant r-dep. upto -0.5 similar: \sim 1 fm -1 0.5 1.5 2 2.5 3 3.5 4.5 1 P.Petreczky, K. Petrov F. Karsch, Hard Probes 2004 - p.6/28

change in free energy due to presence of external sources

L.G. McLerran, B. Svetitsky, Phys. Rev. D24 (1981) 450

$${
m e}^{-F_{ar q q}(r,T)/T} \;=\; rac{1}{9} \langle {
m Tr} L_{ec x} {
m Tr} L_{ec 0}^{\dagger}
angle$$

asymptotic freedom, screening, string breaking

Heavy quark free energies: Testing $\bar{q}q$ interactions in matter

Static quark and anti-quark sources in a thermal heat bath

change in free energy due to presence of external sources

$$\mathrm{e}^{-F_{ar{q}q}(r,T)/T} \;=\; rac{1}{9} \langle \mathrm{Tr} L_{ec{x}} \mathrm{Tr} L_{ec{0}}^{\dagger}
angle$$

 ${}^{\raiselinesizellines}$ $3 imes ar{3}~=~1+8;~~(qar{q})$ -pair can be in a singlet or octet state

$$\mathrm{e}^{-F_{ar{q}q}(r,T)/T} = rac{1}{9} \mathrm{e}^{-F_1(r,T)/T} + rac{8}{9} \mathrm{e}^{-F_8(r,T)/T}
onumber \ e^{-F_1(r,T)/T} = rac{1}{3} \langle \mathrm{Tr} L_{ec{x}} L_{ec{0}}^{\dagger}
angle^{-rac{6}{F_{ec{i}}(r,T)/\sigma^{1/2}}}$$

2

0

-2

-4

0

1

 $r\sigma^{1/2}$

3

2

 F₁, F₈ require gauge fixing: Coulomb gauge; gauge invariant interpretation: O. Philipsen, PLB 535 (2002) 138)

 \Rightarrow F_1 , F_8 are not unique;

BUT: short and large distance behaviour are!!

Singlet free energy and asymptotic freedom

O.Kaczmarek, FK, P. Petreczky, F. Zantow (2004)

singlet free energy defines a running coupling:

Singlet free energy and asymptotic freedom

O.Kaczmarek, FK, P. Petreczky, F. Zantow (2004)

singlet free energy defines a running coupling:

F. Karsch, Hard Probes 2004 - p.8/28

Heavy quark free energy: screening and string breaking

string breaking \Leftrightarrow screening with $q\bar{q}$ pairs from the vacuum

temperature dependence of heavy quark free energy

$$(m_q/T = 0.4)$$

rapid drop of $F(\infty, T)$ across T_c reflects rapid rise of (parton) density

- reconstruct energies from free energies;
- approximate derivatives through finite differences at $T_1,\ T_2$ and fixed r
- requires good control over scaling behaviour of the cut-off "a" (complicated!)

i) singlet free energy

$$\exp(-F_1(r,T)/T) = rac{1}{3} \langle \mathrm{Tr} L_{ec x} L_{ec 0}^{\dagger}
angle$$

(Coulomb gauge)

$$V_1(r,T)\equiv -T^2rac{\partial F_1(r,T)/T}{\partial T}$$

- potential is "deeper": V(r,T) > F(r,T)
- potential "barrier" high also well above $oldsymbol{T_c}$
- "potential" screened at short distances

i) singlet free energy

NOTE:

 $F_{\bar{q}q}(r,T)$ decreases with increasing Tand fixed $r \implies \text{positive entropy}$

$$S = -\left(rac{\partial F}{\partial T}
ight)_V \geq 0$$

$$V_1(r,T)\equiv -T^2rac{\partial F_1(r,T)/T}{\partial T}$$

- potential is "deeper": V(r,T) > F(r,T)
- potential "barrier" high also well above T_c
- "potential" screened at short distances

i) singlet free energy

NOTE: $F_{\bar{q}q}(r,T)$ decreases with increasing Tand fixed $r \Rightarrow$ positive entropy

V(r,T) > F(r,T)

$$V_1(r,T)\equiv -T^2rac{\partial F_1(r,T)/T}{\partial T}$$

- potential is "deeper": V(r,T) > F(r,T)
- potential "barrier" high also well above $oldsymbol{T_c}$
- "potential" screened at short distances

i) singlet free energy NOTE: $F_{\bar{q}q}(r,T)$ decreases with increasing Tand fixed $r \Rightarrow$ positive entropy $F_1(\infty, 1.4T_c) \simeq 200 \text{ MeV}$ $V_1(\infty, 1.4T_c) \simeq 600 \text{ MeV}$

$$V_1(r,T)\equiv -T^2rac{\partial F_1(r,T)/T}{\partial T}$$

- potential is "deeper": V(r,T) > F(r,T)
- potential "barrier" high also well above T_c
- "potential" screened at short distances

i) singlet free energy

ii) singlet energy \Leftrightarrow "potential" energy

When do heavy quark bound states really disappear?

i) singlet free energy

ii) singlet energy \Leftrightarrow "potential" energy

When do heavy quark bound states really disappear?

i) neither V_1 nor F_1 are "potentials"

i) singlet free energy NOTE: $F_{\bar{q}q}(r,T)$ decreases with increasing Tand fixed $r \Rightarrow$ positive entropy $F_1(\infty, 1.4T_c) \simeq 200 \text{ MeV}$ $V_1(\infty, 1.4T_c) \simeq 600 \text{ MeV}$

ii) singlet energy \Leftrightarrow "potential" energy

When do heavy quark bound states really disappear?

i) neither V₁ nor F₁ are "potentials"ii) potential models are MODELS!

Schrödinger equation for heavy quarks:

$$\left[2m_a + \frac{1}{m_a}\nabla^2 + V_1(r,T)\right]\Phi_i^a = M_i^a(T)\Phi_i^a \quad , \quad a = \text{ charm, bottom}$$

- T-dependent color singlet heavy quark potential mimics in-medium modification of $q\bar{q}$ interaction
- \square reduction to 2-particle interaction clearly too simple, in particular close to T_c
- recent analyses:

using F_1 : S. Digal, P. Petreczky, H. Satz, Phys. Lett. B514 (2001) 57; using V_1 : C.-Y. Wong, hep-ph/0408020;

Schrödinger equation for heavy quarks:

$$\left[2m_a + \frac{1}{m_a}\nabla^2 + V_1(r,T)\right]\Phi_i^a = M_i^a(T)\Phi_i^a \quad , \quad a = \text{ charm, bottom}$$

- T-dependent color singlet heavy quark potential mimics in-medium modification of $q\bar{q}$ interaction
- \blacksquare reduction to 2-particle interaction clearly too simple, in particular close to T_c

recent analyses:

using F_1 : S. Digal, P. Petreczky, H. Satz, Phys. Lett. B514 (2001) 57; using V_1 : C.-Y. Wong, hep-ph/0408020;

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ"
E_s^i [GeV]	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
T_d/T_c	1.1	0.74	0.1 - 0.2	2.31	1.13	1.1	0.83	0.74
T_d/T_c	\sim 2.0	\sim 1.1	~ 1.1	\sim 4.5	\sim 2.0	\sim 2.0	—	-

 V_1 leads to dissociation temperatures consistent with spectral function analysis

Schrödinger equation for heavy quarks:

$$\left[2m_a + \frac{1}{m_a}\nabla^2 + V_1(r,T)\right]\Phi_i^a = M_i^a(T)\Phi_i^a \quad , \quad a = \text{ charm, bottom}$$

- T-dependent color singlet heavy quark potential mimics in-medium modification of $q\bar{q}$ interaction
- reduction to 2-particle interaction clearly too simple, in particular close to T_c
 - Schrödinger-eq. yields $T_{\chi} > T_{\psi'}$
 - collision with thermal gluons, $\langle p \rangle \sim 3 T$ can lead to earlier dissolution: $\mathrm{d}n_{J/\psi}/\mathrm{d}t = -n_g \langle \sigma_{dis} \rangle$

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ"
E_s^i [GeV]	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
T_d/T_c	1.1	074	0.1 0.2	2.31	1.10	1.1	0.83	0.74
T_d/T_c	~ 2.0	~ 1.1	~ 1.1	~ 4.5	\sim 2.0	\sim 2.0		-

 ~ 2.0

 ~ 2.0

 ~ 4.5

 ~ 1.1

 ~ 2.0

 T_d/T_c

 ~ 1.1

Υ"

0.20

0.74

Time dependence of $J/\psi\,$ dissolution

Kinetic Formation

dissolution and recombination may occur during cooling of the deconfined medium
 R.L. Thews et al, PRC63 (2001) 054905

Statistical Hadronization

quarkonium formation follows same statistical pattern as light quarkbound statesP. Braun-Munzinger, J. Stachel, PLB490 (2000) 196

- produced $c\bar{c}$ -pairs "separate" in QGP phase
- quarkonium and open charm bound states form at freeze out according to thermal hadronization rules
- \checkmark possibility for J/ψ enhancement (RHIC/LHC)

 $N_{J/\psi} \sim N_{c\bar{c}}^2$

no sequential suppression pattern

thermal excitation, collision broadening (in spectral functions)

Spectral lines emitted by stars: pressure broadening

screening, collision/pressure broadening:
$$\Delta \lambda = \frac{\lambda^2 n \sigma}{\pi c} \left(\frac{2kT}{m}\right)^{1/2}$$

- spectral functions incorporate excitation, dissolution and recombination of states
- stellar atmosphere modifies electric field of an emitting atom

Spectral functions and Dilepton rates

Thermal dilepton rate and vector spectral function

Euclidean two-point functions: T > 0

thermal averages over states

Hamiltonian \hat{H} ; temperature $T \equiv \beta^{-1}$; partition function $Z(\beta) = \text{Tr } e^{-\beta \hat{H}}$; expectation values $\langle O \rangle_{\beta} = \frac{1}{Z(\beta)} \text{ Tr } O e^{-\beta \hat{H}}$ $G_{\phi}^{\beta}(\tau) \equiv \langle 0 | \hat{\phi}^{\dagger}(\tau) \hat{\phi}(0) | 0 \rangle_{\beta}$ $= \frac{1}{Z(\beta)} \sum_{k,l} |\langle l | \hat{\phi} | k \rangle|^2 e^{-\beta E_k} e^{-\tau (E_l - E_k)}$ $= \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \sigma_{\phi}(\omega, T) \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)}$

with spectral function

$$\sigma_{\phi}(\omega,T) = \frac{2\pi}{Z(\beta)} \sum_{k,l} |\langle k|\hat{\phi}|l\rangle|^2 e^{-\beta E_k} \left(1 - e^{-\beta\omega}\right) \delta\left(\omega - (E_k - E_l)\right)$$

Thermal meson correlation functions and spectral functions

Thermal correlation functions: 2-point functions which describe propagation of a $\bar{q}q$ -pair

spectral representation of correlator \Rightarrow in-medium properties of hadrons; thermal dilepton (photon) rates

 $G_H^eta(au,ec r) \;=\; \langle J_H(au,ec r) J_H^\dagger(0,ec 0)
angle \,;\;\; J_H(au,ec r) = ar q(au,ec r) \Gamma_H q(au,ec r)$

Thermal meson correlation functions and spectral functions

Thermal correlation functions: 2-point functions which describe propagation of a $\bar{q}q$ -pair

spectral representation of

Euclidean correlation functions

$$G_{H}^{\beta}(\tau,\vec{r}) = \int_{0}^{\infty} \mathrm{d}\omega \int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \,\boldsymbol{\sigma}_{H}(\omega,\vec{p},T) \,\mathrm{e}^{i\vec{p}\vec{r}} \,\frac{\cosh(\omega(\tau-1/2T))}{\sinh(\omega/2T)}$$

Thermal meson correlation functions and spectral functions

Thermal correlation functions: 2-point functions which describe propagation of a $\bar{q}q$ -pair

Thermal correlation functions for hadronic excitations in QCD

thermal modifications of the hadron spectrum is encoded in finite temperature

Euclidean correlation functions

hadronic (mesonic) currents, composite $q\bar{q}$ -operators

$$J_H = \bar{\psi}(\tau, \vec{r}) \ \Gamma_H \ \psi(\tau, \vec{r})$$

$$G_H^\beta(\tau, \vec{r}) \equiv \langle J_H(\tau, \vec{r}) J_H^\dagger(0, \vec{0}) \rangle_\beta$$

quantum numbers (H) fixed through Γ_H :

state		J^{PC}	Γ_H	(u, d)-states	$c\bar{c}$ -states
scalar	${}^{3}P_{0}$	0^{++}	1	σ	χ_{c0}
pseudo-scalar	${}^{1}S_{0}$	0^{-+}	γ_5	π	η_c
vector	${}^{3}S_{1}$	1	γ_{μ}	ρ	J/ψ
axial-vector	${}^{3}P_{1}$	1^{++}	$\gamma_\mu\gamma_5$	δ	χ_{c1}

- Ieft: charmonium spectral functions below T_c , *i.e.* at $T \simeq 0.6 T_c$, lattice size $48^3 \times 24$
- In right: correlation function at $T = 0.9T_c$ over reconstructed correlation function at $T \simeq 0.9 T_c$ using the spectral function generated at $T \simeq 0.6 T_c$, *i.e.*

- Ieft: charmonium spectral functions below T_c , *i.e.* at $T \simeq 0.6 T_c$, lattice size $48^3 \times 24$
- In right: correlation function at $T = 0.9T_c$ over reconstructed correlation function at $T \simeq 0.9 T_c$ using the spectral function generated at $T \simeq 0.6 T_c$, *i.e.*

data for $G_H(\tau, T)$ over reconstructed correlation functions at T from data below T_c

scalar and axial-vector correlation functions: strong temperature dependence just above T_c for χ_c states (normalized at $T < T_c$) $(48^3 \times N_{\tau}, N_{\tau} = 12, 16, 24, a = 0.04 \text{ fm})$

vector and pseudoscalar correlation functions:

no temperature dependence for η_c up to 1.5 T_c ; only mild but systematic temperature dependence of J/ψ (normalized at $T < T_c$) ($N_{\sigma} = 40, \ 48, \ 64, \ N_{\tau} = 12, \ 16, \ 24, \ 40, \ a = 0.02 \ \text{fm}$)

pattern seen in correlation functions also visible in spectral functions

scalar spectral functions

F. Karsch, Hard Probes 2004 - p.19/28

Heav

Heavy quark spectral functions and correlation functions

Heavy quark spectral functions comparison of different approaches

30

30

Heavy quark spectral functions comparison of different approaches

S. Datta et al., hep-lat/0312037

Heavy quark spectral functions pressure broadening

- thermal broadening of charmonium spectral functions?
- no "first principle" evidence, BUT some evidence using resonance ansatz that incorporates a thermal width

T. Umeda, Proceedings of the RIKEN-BNL workshop on Lattice QCD at finite temperature and density, BNL-72083-2004

the original Matsui-Satz concept:

- check whether medium supports existence of bound states under given thermal conditions: yes/no decision
- **•** fold with nuclear density and $T(\tau)$ cooling profile

 \Rightarrow "abnormal" suppression pattern

the original Matsui-Satz concept:

- check whether medium supports existence of bound states under given thermal conditions: yes/no decision
- **s** fold with nuclear density and $T(\tau)$ cooling profile

 \Rightarrow "abnormal" suppression pattern

the original Matsui-Satz concept:

- check whether medium supports existence of bound states under given thermal conditions: yes/no decision
- **s** fold with nuclear density and $T(\tau)$ cooling profile

 \Rightarrow "abnormal" suppression pattern

"conventional complications": nuclear absorption

absorption in p-A collisions well analyzed

NA50, EPJC33 (2004) 31

$$\sigma_{pA} = \sigma_0 \cdot A \; \exp\left(-\sigma_{abs}L
ight)$$

"conventional complications": nuclear absorption

absorption in p-A collisions well analyzed

NA50, EPJC33 (2004) 31

$$\sigma_{pA} = \sigma_0 \cdot A \, \exp\left(-\sigma_{abs}L\right)$$

- Matsui-Satz: dissolved $c\overline{c}$ never recombine again; potential model approach suggests sequential suppression pattern
 - details depend on "potential" used in Schrödinger equation
 - generic features consistent with spectral function studies
 - $\int J/\psi$ survives the deconfinement transition and melts only at

 $T_{J/\psi}/T_c \sim (1.5 - 2.5)$

 ψ' and χ_c dissolve at (or close to) T_c

 $T_{\psi'} < T_{\chi} \text{ and } T_{\chi} \gtrsim T_c$???

If so: small variations in dissociation temperature close to T_c will have significant effect on suppression pattern (large changes in density)

SPS data on charmonium suppression: NA50, hep-ex/0405056

may support sequential suppression pattern (or not)

SPS data on charmonium suppression: NA50, hep-ex/0405056

may support sequential suppression pattern (or not)

SPS data on charmonium suppression:

may support sequential suppression pattern

SPS data on charmonium suppression:

may support sequential suppression pattern

SPS data on charmonium suppression:

may support sequential suppression pattern OR NOT

SPS data on charmonium suppression:

may support sequential suppression pattern OR NOT

SPS data on charmonium suppression:

may support sequential suppression pattern OR NOT

Deconfinement and Quarkonium Suppression

- Deconfinement, screening and asymptotic freedom
 - deconfinement is density driven
- Heavy quark free energies
 - screening sets in at short distances; 1/r still dominant scale
- Potential models for quarkonium
 - dissociation may spoil sequential suppression pattern
- Spectral functions
 - ${}_{m s}$ (directly produced) J/ψ exist well above T_c
- Charmonium in heavy ion collisions
 - sequential suppression pattern may be the smoking gun