20 years of \mathbf{J} / ψ suppression at the CERN SPS

Results from experiments NA38, NA51 and NA50

Louis Kluberg

CERN and LLR/Ecole Polytechnique/CNRS-IN2P3

Acknowledgements

Thanks to the work of the 150 members of the
NA38, NA51 and NA50 Collaborations and, in particular,
to the enthusiasm and endless efforts of
the students and colleagues
who have been struggling for years
to discover the mysteries, understand the problems and overcome the countless traps hidden in our data

A critical review of past results
■ Is there still any anomalous J / ψ suppression?

1. What is normal suppression?
2. What is abnormal suppression?
3. Was there ever an anomaly?
4. Is the anomaly still there?

■ The anomaly (if any): updated features

The proposal and original experimental goal

Experiment NA38 was proposed in March 1985:

- to study thermal dimuon production in O-induced reactions
- using the NA10 muon spectrometer
- without even mentioning J / ψ production

From the abstract of the proposal :
Shuryak (1980), Kajantie and Miettinen (1982), Hwa and Kajantie (1985),
McLerran and Toimela (1985)
....Thermal dimuons are expected to be emitted from a quark-gluon plasma at a reasonable rate in the 1-3 GeV/c² transverse mass range, and to differ from ordinary dimuons by their p_{t} and rapidity distributions....

And then...came Matsui and Satz (1986)

From their abstract (Phys. Lett. B 178 (1986) 416.):
If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, then colour screening prevents cc̄ binding in the deconfined interior of the interaction region.../... It is concluded that J / ψ suppression in nuclear collisions should provide an unambiguous signature of quark-gluon plasma formation.

Had this prediction (not postdiction) not existed:

- NA38/50 might have found....thermal dimuons (??????)
- "comovers" would probably still be unknown particles
- PHENIX (RHIC) and ALICE would look quite different and...
- Many theoreticians might have 50% less (or quite different) publications

The NA10/38/51/50... 60 muon spectrometer

Kinematical coverage: $\bullet 0 \leq y_{c m} \leq 1 \quad\left(2.92 \leq y_{l a b} \leq 3.92\right)$

- $\left|\cos \theta_{C S}\right|<0.5$

Acceptances:

- $\operatorname{Acc}(J / \psi)=12.5 \%$
- $\operatorname{Acc}(D Y)=13.8 \%\left(\right.$ for $\left.2.9<M_{\mu \mu}<4.5 \mathrm{GeV} / \mathrm{c}^{2}\right)$

The NA50 target region

Acceptance: $1.9 \leq \eta_{\text {lab }} \leq 4.2$ for the Multiplicity detector
$1.1 \leq \eta_{l a b} \leq 2.3$ for the EM Calorimeter
$\eta_{l a b} \geq 6.3$ for the Zero Degree Calorimeter

In the beginning...there was no Drell-Yan.
and there was no anticipated normal behaviour either

And we had to live without....
as shown in the next slides
for our first muon pair mass spectrum
in 200 GeV O-U reactions
Was O-U at 200 GeV abnormal ???

Fig. 5. Mass spectrum and fit of the signal muon pairs in two different E_{T} bins: $E_{\mathrm{T}}<34 \mathrm{GeV}$ (a) and $E_{\mathrm{T}}>85 \mathrm{GeV}$ (b).

NA38 first results:

O-U at $200 \mathrm{GeV} / \mathrm{c}$:

$$
S=\frac{J / \psi}{\text { continuum }(2.7-3.5)}
$$

Factor 2 suppression....explained with...
...comovers
but...including:

- "normal" nucl. absorption
- IMR charm-like excess
(fit starts from 1.7 (or 2.1) GeV/c² !)

Fig. 6. The evolution of $S=N_{\Psi} / N_{\mathrm{c}}$ as a function of E_{T}.

The muon pair mass spectrum... 15 years later

$$
\frac{d N^{+-}}{d M}=A_{J / \psi} \frac{d N_{J / \psi}}{d M}+A_{\psi} \frac{d N_{\psi^{\prime}}}{d M}+A_{D Y} \frac{d N_{D Y}}{d M}+A_{D \bar{D}} \frac{d N_{D \bar{D}}}{d M}+\frac{d N_{B G}}{d M}
$$

- $J / \psi, \psi^{\prime}, D Y$ and $D \bar{D}$ shapes are generated by Monte Carlo and reconstructed as real data
- J / ψ and ψ^{\prime} mass resolutions are $\sim 100 \mathrm{MeV}$
- Combinatorial background, mostly from pion and kaon decays, is extracted from measured like-sign pairs
- Final fit performed for $M>2.9 \mathrm{GeV} / \mathrm{c}^{2}$

Why do we use Drell-Yan?

Drell-Yan (muon pairs) is now a well known computable process, proportional to the nr. of elementary nucleon-nucleon collisions, with the following priceless advantages:

- identical experimental biases
- identical inefficiencies
- identical selection criteria
- identical cuts
as J / ψ

Therefore, the corrections cancel out in the ratio

$$
\frac{\sigma(J / \psi)}{\sigma(D Y)}
$$

which is, moreover, insensitive to normalization factors/uncertainties.

Advantages and drawbacks of Drell-Yan

Why do we use a reference curve?

The question:

- Is J / ψ abnormally suppressed in nucleus-nucleus collisions and, in particular, in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $158 \mathrm{GeV} / \mathrm{nucl}$. ?

The standard:

- How is it suppressed in
p-A collisions at $158 \mathrm{GeV} /$ nucl. (normally, by definition) ?

Our only "available tool"
(while waiting for NA60 direct measurement at 158 GeV)

- A set of: p-A measurements at $450 / 400 \mathrm{GeV}$ $\mathrm{p}-\mathrm{A}$ and $\mathrm{A}-\mathrm{B}$ measurements at 200 GeV

J/ ψ normal nuclear absorption: published (I)

- p-A 450 GeV from NA38: 1st $p-A$ sample (1987)
- pp, p-d 450 GeV from NA51: collected in 1992
- p-A 200 GeV secondary beam collected in 1987/88 and
- A-B 200 GeV (1986/1990)
- Separate fit of $B_{\mu \mu} \sigma_{0}(A \times B)^{\alpha-1}$ α_{450} and α_{200} compatible
- "Simultaneous" fit (same α) \rightarrow rescaling $450 \searrow 200 \mathrm{GeV}$

BUT samples collected under significantly different experimental conditions.

J/ ψ normal nuclear absorption: published(II)

- Simultaneous fit leads to
$\alpha_{\text {sim }}=0.918 \pm 0.015$
and to the rescaling factor 450 GeV $\searrow 200$ GeV
- After rescaling to 200 GeV
- Apparently normal behaviour : from pp up to $S-U$

J/ ψ absorption in Pb-Pb: published (I)

- All data including 450 GeV reference data rescaled to 200 GeV
- Shows: difference between "normal" absorption and $\mathrm{Pb}-\mathrm{Pb}$ behaviour
- leads to:

Anomalous J / ψ suppression
in $\mathrm{Pb}-\mathrm{Pb}$ interactions
(PLB (1997))

J/ ψ absorption in Pb-Pb: published (II)

- Same as previous plot
- Data plotted vs. \bar{L}
- leads, by simple exponential fit $\sigma_{\psi}(A B) \propto(A B) \exp \left(-\rho_{0} \sigma_{a b s} \bar{L}\right)$ to: $\sigma_{a b s}=6.2 \pm 1.1 \mathrm{mb}$ or
$\simeq 6.9 \pm 1.2 \mathrm{mb}$ (Glauber)
- allows centrality study of J / ψ suppression

- J / ψ / Drell-Yan ratio
- $\mathrm{Pb}-\mathrm{Pb}$ data rescaled to 200 GeV
- Reference only from available 200 GeV samples with Drell-Yan events
- $\sigma_{a b s}=7.1 \pm 3.0 \mathrm{mb}$
(in Pb96 paper, unpublished S-U had significantly underestimated errors)
- first pattern of centrality dependence of J / ψ suppression

The J / ψ suppression pattern in $\mathrm{Pb}-\mathrm{Pb}$
 The data samples

Data samples in $\mathrm{Pb}-\mathrm{Pb}$ collisions

data sample	Interaction length $\left(L_{T} / \lambda_{I}\right)$	number of sub-targets	beam intensity (ions/burst)	number of J / ψ	number of ψ^{\prime}	Published
1995	$17 \% \lambda_{I}$	7 (in air)	3×10^{7}	50000	-	Yes
1996	$30 \% \lambda_{I}$	7 (in air)	5×10^{7}	190000	-	Yes
1998	$7 \% \lambda_{I}$	1 (in air)	5.5×10^{7}	49000	380	Partially
2000	$9.5 \% \lambda_{I}$	1 (in vacuum)	7×10^{7}	129000	905	No

Looking backwards to 1995... (I)

Looking backwards to 1995...(I bis)

Looking backwards to 1996...(I)

1996 data sample was the largest one ($190000 \mathrm{~J} / \psi$) thanks to $7(2 \times 1 \mathrm{~mm}+5 \times 2 \mathrm{~mm}$ thick) targets but:

- Pb-air interactions difficult to identify:
$\left.\Longrightarrow \begin{array}{l}\text { potential } \mathrm{Pb} \text {-air contamination } \\ \text { centrality } \& \text { mass smearing }\end{array}\right\}$ peripheral reactions
- For peripheral $\mathrm{Pb}-\mathrm{Pb}$, sub-target inefficiently identified:
\Longrightarrow centrality \& mass smearing $\}$ peripheral reactions
- Target of 12 mm total length induces reinteractions
\Longrightarrow centrality smearing
\} central reactions

The standard and "minimum bias" methods

■ In the "standard method", for each centrality bin, the fit of the dimuon mass spectrum \Longrightarrow

$$
\frac{B_{\mu \mu} \sigma_{J / \psi}}{\sigma_{D Y}}
$$

- In the "minimum bias" method, for each centrality bin, the dimuon mass spectrum \Longrightarrow the number of J / ψ the "minimum bias" spectrum \Longrightarrow the number of $M B$ events the number of DY events is then computed from:

$$
\left(d N / d E_{T}\right)_{D Y^{*}}=\left(d N / d E_{T}\right)_{M B}^{e x p} \times \frac{\left(d N / d E_{T}\right)_{n h}^{t h}}{\left(d N / d E_{T}\right)_{M B}^{+h}}
$$

and allows to compute:

$$
\frac{B_{\mu \mu} \sigma_{J / \psi}}{\left(\sigma_{D Y}\right)^{*}}
$$

The "MB" method: drawbacks and advantages

Advantage: Huge sample of "minimum bias" events
\Longrightarrow tiny statistical errors

BUT:

unnormalized sample and:

- idkhical experimental biases
- idelifical inefficiencies
- idehtical selection criteria
- idelfical cuts
as J / ψ

$$
\frac{\sigma(J / \psi)}{\sigma(D Y)^{*}}
$$

Looking backwards to 1998...(I)

1998 data sample intended to clarify doubts from 1996 thanks to 1 single (3 mm thick) target (still not in vacuum) but:

- Pb-air interactions poorly identified:
\Longrightarrow contamination by Pb -air $\}$ peripheral reactions
- Only 3mm thick target:
$\Longrightarrow \mathrm{Pb}-\mathrm{Air} / \mathrm{Pb}-\mathrm{Pb}$ up wrt 1996$\}$ peripheral reactions
- Only 3mm thick target
\Longrightarrow "almost" no reinteractions $\}$ central reactions

Looking backwards to 1998... (II)

The year 2000 data

In 2000, and from the lessons from the previous samples:
1 single (4 mm thick) target in vacuum
Use of tracking in MD to identify primary interaction vertex:

- No Pb-air contamination in peripheral interactions
- Efficient primary vertex "on target" identification
- No reinteractions in central collisions
\Longrightarrow The cleanest of all our samples !!!
MD tracking technique, later extended to 1998
$\Longrightarrow 1998$ and, in particular, peripheral of 1998 reanalyzed with only small Pb -Air contamination

Standard analysis with:

- adapted minimal cuts (allowed by clean sample)
- use of GRVLO94 (practically same result with GRVLO98)
- improved J / ψ line shape

Affect only absolute normalization, not pattern shape itself
Special effort on the reference curve: Normal Nuclear Absorption

- Based on all our recent p-A data at 450 and 400 GeV and using at 200 GeV
- either, as in the past, both p-A and S-U data
- or, newest development: ONLY p-A data

The year 2000 results (I)

 As a function of E_{T} used here as a centrality estimator:

- the ratio of cross-sections

$$
\frac{\sigma(J / \psi)}{\sigma(D Y)}
$$

steadily decreases, from peripheral to central collisions by a factor $\simeq 2.5$

- No saturation is seen for the most central collisions
- Statistical errors are in the range [9\%-7\%]

The Y2K results (III)

Normal nuclear absorption determined from:

- new p-A data at 450 and 400 GeV
- S-U (200 GeV) leading to $\sigma_{a b s}=4.2 \pm 0.4 \mathrm{mb}$ and providing the rescaling factor $450 / 400 \rightarrow 200 \mathrm{GeV}$
by "simultaneous" (same $\sigma_{a b s}$) fit.
The ratio $\frac{\sigma(J / \psi)}{\sigma(D Y)}$
behaves:
- "normally" for peripheral collisions
- more and more "abnormally" for more and more central collisions

The Y2K results (IV)

Determine absorption reference at 158 GeV from p-A data only as S-U could be already abnormal, i.e. maybe affected by comovers...

- Only use most precise data
- All available 200 GeV data (NA38) plus pp and p-Pt (NA3)
- No Drell Yan at $200 \mathrm{GeV} \Longrightarrow$ absolute J / ψ cross-sections
- Separate fits show: excellent compatibility
- "Simultaneous" fit leads to $\sigma_{a b s}$ and rescaling factor 450/200

- Glauber fit on p-A data only leads to:
$\sigma_{a b s}=4.1 \pm 0.4 \mathrm{mb}$ from xsection $\sigma_{a b s}=4.2 \pm 0.4 \mathrm{mb}$ from $J / \psi / D Y$
- Absolute cross-sections "experimentally" rescaled to 200 GeV , from p-A only
- O-Cu, O-U and even S-U are just plotted BUT NOT INCLUDED in the fit They show, within errors, a p-A - like behaviour

$1995 J / \psi$ suppression in Pb-Pb (updated)

- Same as previous plot with all data rescaled at 158 GeV
- Confirm: In Pb-Pb, with pure p-A reference, J / ψ is still
"anomalously" suppressed
- for $J / \psi / D Y$ "normal" absorption reference:
the normalization \searrow by 0.6% !! its uncertainty \nearrow by a factor 2 !!
- For Pb-Pb, the ratio "Measured/Expected" amounts to 0.65 ± 0.08

The Y2K results with updated p-A reference

and... with traditional (p-A and S-U) reference

J / ψ suppression: p_{T} dependence (I)

An attempt to study p_{T} dependent features of J / ψ suppression.
We consider 11 bins in p_{T}, the transverse momentum of the J / ψ We study the ratios:

$$
F_{i}=\frac{d N_{J / \psi} / d p_{T}}{N_{D Y}\left(M>4.2 G e V / c^{2}\right)} \quad \text { and } \quad R_{i}=\frac{F_{i}}{F_{1}}
$$

where i is the $i^{\text {th }}$ centrality bin and $\left\{d N_{J / \psi} / d p_{T}\right.$ is the nb. of J / ψ of a given p_{T}, $N_{D Y\left(M>4.2 \mathrm{GeV} / \mathrm{c}^{2}\right)}$ is the total nb. of $D Y$ evts. of $M>4.2 \mathrm{GeV} / \mathrm{c}^{2}$ as a function of the centrality of the collision

J / ψ suppression: p_{T} dependence (II)

J / ψ suppression: p_{T} dependence (III)

J / ψ suppression: p_{T} dependence (IV)

From pp...to Pb-Pb

The Y2K results vs. energy density

Conclusions(I)

1. Drell-Yan (muon pair) production exhibits a "normal" behaviour, i.e., $\sigma_{D Y} \propto$ number of nucleon-nucleon collisions
from pp up to Pb-Pb interactions. (1995/1996-2000)
2. From measured J / ψ production in p-A collisions at 450, 400 and $200 \mathrm{GeV} / \mathrm{c}$ we have now (2004) a
```
robust experimental determination of ( }\mp@subsup{\sigma}{abs}{J/\psi}\mp@subsup{)}{200}{
```

and a

$$
\text { reliable calculation of }\left(\sigma_{a b s}^{J / \psi}\right)_{158}
$$

based on p-A interactions exclusively (fall 2004 !) (attend G. Borges talk for details)

Conclusions(II)

3. With respect to the expected values, as extrapolated from p-A exclusively (1995/2004):

$$
\sigma_{J / \psi}{ }^{P b-P b} \text { is significantly suppressed }
$$

4. Pb-Pb 2000 data, free from past problems, show and confirm (2004) that:

For peripheral $\mathrm{Pb}-\mathrm{Pb}$ reactions, the ratio $\sigma_{J / \psi}{ }^{P b-P b} / \sigma_{D Y}^{P b-P b}$ follows the "normal" nuclear absorption (like p-A).
and
For more central collisions, i.e., $b \leq 9 \mathrm{fm}, \quad J / \psi$ production departs from this "normal" behaviour. It exhibits an "abnormal" suppression which increases with increasing centrality.

Conclusions(III)

What I learned from experiment:

1/ The only 100\% right paper is, usually, the NEXT one to be published.
and also:

2/ Never build models with adjustable free parameters to try and reproduce still UNPUBLISHED, and therefore preliminary results.

For PUBLISHED results...beware of 1/

