Jet Fragmentation and Baryon Production

- Jet fragmentation
- Why we should expect medium effects
- Energy loss effects on the fragmentation function
- Medium effects on baryon production near a "bath" of quarks & antiquarks

Barbara Jacak Stony Brook University Nov. 8, 2004

Analog of hard x-ray probe of EM plasma

• Want to know

pressure, viscosity, equation of state, thermalization time & extent determine from collective behavior

• Other plasma properties

radiation rate, collision frequency, conductivity, opacity, Debye screening length
 what is interaction σ of q,g in the medum?
 need short wavelength strongly interacting probe
 transmission probability
 jet quenching via R_{AA}

high momentum q,g are the probes!

Hard quarks & gluons \rightarrow jets

Jet Fragmentation in vacuum

String Breaking

Used in Lund Model & PYTHIA ARIADNE splits color dipoles Shower gluons add kinks to strings Hadrons formed when string breaks into two (multiple times)

 \rightarrow L-R symmetric splitting function F(z) = (1-z)^a/z exp(-bM_T²/z)

Cluster Fragmentation Used in HERWIG Parton evolves by showering until coupling is small; g → q+qbar Neighbors combine to color singlets Clusters are superposition of meson resonances;decay according to phase space

 \rightarrow no clear functional form in z

Formation time of fragmentation hadrons

• Uncertainty principle relates hadron formation time to hadron size, R_h and mass, m_h In laboratory frame: $\tau_f \sim R_h (E_h / m_h)$ consider 2.5 GeV p_T hadrons $\tau_{\rm f} \sim 9-18$ fm/c for pions; $R_{\rm h} \sim 0.5-1$ fm $\tau_{\rm f} \sim 2.7$ fm/c for baryons (R_h~1 fm) • Alternatively, consider color singlet dipoles from combination of q & \bar{q} from gluon splitting Using gluon formation time, can estimate $\tau_{\rm f} \sim 2E_{\rm h} (1-z)/(k_{\rm T}^2 + m_{\rm h}^2)$

for z = 0.6-0.8 and $k_T \sim \Lambda_{QCD}$: τ_f baryons ~ 1-2 fm/c

 $R(Au nucleus) \sim 7 fm$ \rightarrow Baryon formation is INside the medium!

Energy loss effect: increased gluon radiation

- Initial state multiple scattering
- Energy loss

Induced Gluon Radiation

- \sim collinear \Rightarrow gluons in cone
- "Softened" fragmentation

 $\left<\Delta k_T^2\right> \Box \int \rho_g(x) dx$

 $\langle \Delta E \rangle \Box \int x \, \rho_g(x) \, dx$ I. Vitev, nucl-th/0308028

But, things are more complicated

Radiated gluons are collinear (inside jet cone)

Can also expect a jet "wake" effect, medium particles "kicked" alongside the jet by energy they absorb

Fries, Bass & Mueller nucl-th/0407102

And expect hard-soft recombination

C.M. Ko et al, Hwa & Yang PRC68, 034904, 2003 PRC67, 034902, 2003 nucl-th/0401001 & 0403072

How is baryon number conservation ensured in these mechanisms?

And EVEN MORE complicated

 Edward's conic flow: a pressure wave or "super wake" i.e. medium response to the energy deposited by jets
 Correlations of jet fragments with flowing medium Armesto, Salgado & Wiedemann, hep-ph/0405301

Flowing medium: Anisotropic shape

Both consistent with features in data with modest jet fragment energy

Does jet fragmentation have a meaning in presence of medium? Mechanisms mix up medium & radiated partons New tool to see conductivity & correlations in medium at ~1 fm/c??

Data say: away side jet suppression/broadening

9

Yields on away side

Integrated over 90 degrees

More partners on same side

<N_{ch} in jet>

PHENIX preliminary 1/N_{trig} dN/dp_T^{ass} Must measure own dN/dp $I/N_{trig} dN/dp_T^{assoc}$ dAu 0-20% reference! $20-40\% \times 2$ 1/N trig $40-88\% \times 4$ в×8 Our jets are soft. Trigger bias from high p_T hadron. 10 10 10⁻² Far side Near side 10 0 2 3 4 5 2 3 1 0 1 p_T^{asso}(GeV/c) p_T^{asso}(GeV/c)

jet multiplicity unchanged with d+Au centrality vs. pp STAR 1/N_{trig} dN/dp_T^{assoc} shown on previous slide + full jet reconstruction in dAu (shown at QM04) But, we need to figure out the QUESTION to ask in Au+Au!

What about baryons?

- Formed via diquarks in string fragmentation
- Reduced phase space due to high mass in cluster decay
- Suppressed relative to mesons by factor of ~10

Baryons already different in p+A

Nuclear medium modifies initial state

Shouldn't initial state scattering and fragmentation factorize?! R. Hwa says medium already matters in d+Au

In Au+Au baryons scale with N_{coll} !

do jet analysis with identified triggers

2 particle correlations

Select particles with p_T= 2.5-4.0GeV/c

Identify them as mesons or baryons via time-of-flight

Find second particle with $p_T = 1.7-2.5 \text{GeV/c}$

Plot distribution of the pair opening angles; integrate over 55°

intermediate p_T baryons ARE from jets

Jet partner ~ equally likely for trigger baryons & mesons! Same side: slight decrease with centrality for baryons Dilution from boosted thermal p, pbar?

Away side: partner rate as in p+p confirms jet source of baryons! "disappearance" of awayside jet into narrow angle for both baryons and mesons

What's going on?

Jet partner distribution on trigger side

Compare to hard-soft recombination

Conclusions

- Baryon excess has a very significant jet component Dilution becoming visible in most central collisions?
- Jet fragmentation is modified by the medium! Baryon production enhanced Au+Au jets richer in soft hadrons than p+p or d+Au Away side jet gets complicated Moderate p_T associated particles have significant medium splash? Should we call them jet fragments??
- A new probe!
 - Leading & association baryons $\rightarrow q,qbar$ correlations in the medium

Mapping the splash \rightarrow how the medium conducts energy

Fun to come...

Jets in PHENIX

Large multiplicity of charged particles

 --solution: find jets in a statistical manner
 using angular correlations of particles
 mixed events give combinatorial background

2 x 90 degree acceptance in phi and |η|<0.35
 --solution: correct for azimuthal acceptance,

but not for η acceptance

Elliptic flow correlations

 --solutions:
 use published strength values
 and subtract
 (could integrate over 90°
 to integrate all even
 harmonics to zero)

So, do jet analysis on identified baryons

Trigger: hadron with $p_T > 2.5$ GeV/c Identify as baryon or meson *Biased, low energy, high z jets!*

Plot $\Delta \phi$ of associated partners Count associated lower p_T particles for each trigger \rightarrow "conditional yield" Near side yield: number of jet associated particles from same jet in specified p_T bin Away side yield: jet fragments from opposing jet

Compare p+p and d+Au to PYTHIA

Hydro. expansion at low p_T + jet quenching at high $p_{T.}$

Coalesce (recombine) boosted quarks → hadrons enhances mid p_T hadrons baryons especially

Phase space filled with partons:coalesce into hadrons

Coalescence Model results

•intermediate $p_{\rm T}$ hadrons from coalescence of flowing partons **NOT from jets, so no jet-like** associated particles

k_T , j_T at RHIC from p+p Data

Pions in 3 detectors in PHENIX

- Charged pions from TOF
- Neutral pions from EMCAL
- Charged pions from RICH+EMCAL

Cronin effect gone at $p_T \sim 8 \text{ GeV/c}$

A puzzle at high p_T Nu Xu (¹d)²/₂ STAR Charged particles, minimum bias Hydro calc. (Huovinen et al.) 0.3 Adler et al., nucl-ex/0206006 0.25 0.2 0.15 0.1 0.5 $v_2(p_f)$ 0.05 charged particles, 200 GeV 0.4 centrality: 30-50 % 0 0.3 2 3 4 0 1 0.2 0.1 0 Preliminary

-0.1

0

2

4

6

• Still flowing at p_T = 8 GeV/c? Unlikely!!

33

 p_{T} (GeV/c)

10

8

12