

Open Charm Production IN STAR

Manuel Calderón de la Barca Sánchez Indiana University STAR Collaboration

Hard Probes, November 6, 2004

- ★ Open Charm: what we know / would like to know
- D0, D*±, D± open charm measurement in d+Au collisions
- Combination with single electron spectra in p+p and d+Au collisions
- ★ Charm cross sections
- Open charm pT spectrum and theoretical comparisons

STAR

 $2\overline{Q}$ in pp...

At high energies, gluon fusion dominates the production cross-section ⇒ Heavy Flavor production directly probes gluon distributions of colliding particles

General: Heavy-flavor and quarkonia production is theoretically not fully understood ... even in p+p collisions.

Open Charm is hard...to measure

Data mostly from fixed target experiments at SPS and Fermilab, but also CDF • energy range : 200–800 AGeV ($\sqrt{s} = 19 - 38$ GeV), $\sqrt{s} = 1.8$ TeV

• p+A: linear nuclear A-dependence assumed $\sigma_{pA} = \sigma_{pp} A^{\alpha}$, $\alpha = 1$

Extrapolations to RHIC energies

- Different PDF sets or quark masses lead to different energy dependences
- All the curves are normalized at low energies
 - → the 'predictions' for higher energies have a certain spread :
 - changing PDF sets : range 400–800 µb at RHIC energies

2 changing c quark mass by $\pm 15\%$: range 300–700 µb

Open charm at RHIC

- ★ Part of fundamental understanding of charm production in pp
- ★ J/ Ψ suppression, of course!
 - * Needed for normalization (can't do Drell-Yan)
 - * Goal: $\sigma_{J/\psi} / \sigma_{c\bar{c}}$ in pp, d+A, A+A (that's a long term program!)
- ★ More recent questions:
 - * Thermalization of charm quarks?
 - Charm quarks interact with evolving QGP (light quarks, g) makes early thermalization a possibility
 - * Production rate (J/ Ψ recombination), pt spectra (flow? Thermal?), azimuthal anisotropy (v₂)
 - ★ Heavy quark energy loss
 - \star Vacuum radiation is suppressed in the dead cone,
 - * but maybe filled by medium induced radiation...

- Arnesto, Salgado, Wiedemann, hep-ph/0312106
- \star Maybe an observable D/ π enhancement at pt 5-10 GeV

D⁰ in STAR: Analysis Methods

Event-Mixing Technique

- Identify charged Kaon and Pion tracks through energy loss in TPC
- Produce oppositely charged K- π pair invariant mass spectrum in same event
- Obtain background spectrum through mixed event
- \bullet Subtract background and get D^0 spectrum

STAR

D⁰ in d+Au Collisions

 $D^{0}+\overline{D^{0}}$ to increase statistics 0 < p_T < 3 GeV/c, |y| < 1.0

Gaussian function + linear Residual background

> Mass and Width consistent with PDG values considering detector effects

- mass=1.867±0.006 GeV/c²;
- mass(PDG)=1.8645±0.005 GeV/c²
- mass(MC)=1.865 GeV/c²
- width=13.7±6.8 MeV
- width(MC)=14.5 MeV

11

 $D^{*\pm} \rightarrow D^0 \pi$ (B.R. 68%) Decay Kinematics (Pythia)

"Golden channel" for open charm study

Standard method: $M(D^{*\pm}) - M(D0)=145.421$ MeV

Width~1 MeV

Difficulty: the low efficiency of the soft pion reconstruction STAR full field: tracks curl up for $p_T < 100$ MeV/c

12

D[±]→Кππ (В.R. 9.1%)

- 3-body decay \Rightarrow more background
- high-p_T reach

- ★ D[±] mass=1.864±0.0052 GeV/c²
- ★ D[±] mass(PDG)=1.869 GeV/c²
- ★ D[±] mass(MC)=1.868±0.002 GeV/
- ★ width = 13.83±3.7 MeV
- ★ width (MC)=14.9±1.6 MeV

d+Au minbias collisions @ 200GeV

Good agreement with other experiments:

 $D^+/D^0 \approx D^*/D^0 = 0.40 \pm 0.09 \text{ (stat)} \pm 0.13 \text{ (sys)}$

Assuming $\sigma(D^*) = \sigma(D^{\pm})$ and scale $\sigma(D^*)$ and $\sigma(D^{\pm})$ to match D^0 by $D^*/D^0=0.40$

Charm Quark Hadronization at RHIC

Open charm spectra is hard: NLO c-quark spectrum = D spectrum

- data favor a fragmentation function peaked at $z\sim 1$.
- observed in fixed target exp. at lower energies
- \bullet solved by intrinsic $k_{\rm T}$ model to counter-balance effect of c-quark hadronization
- doesn't work at RHIC because spectrum is too broad
- Note: Choice of PDF can change yield at high p_t by factor of 3...

Combining with Electron Analysis

18

An increasing excess found at higher pT region, $p_T > 1.0 \text{ GeV/c}$, \rightarrow as expected to be contribution of semi-leptonic decay from heavy flavor hadrons

Background Subtracted Spectra in p+p & d+Au

Nuclear Effects (Cronin)?

STAR

* Within the errors consistent with binary scaling ... * NOTE: R_{dAu} for a given p_T comes from heavy quarks from a wide p_T range

STAR Preliminary

measured electron PHENIX single e in AuAu spectra SPS/FNAL 10° \Rightarrow better σ_{cc} 10^{2} $\sigma_{c\bar{c}}^{NN} = 1.4 \pm 0.2(stat) \pm 0.4(sys)$ mb $(\sqrt{s})^n$ fit ----- n = 1.8± 0.7 PYTHIA with flavor excitation PYTHIA w/o flavor excitation 10^{2} 10^{3} √s (GeV)

- The more we learn about heavy flavor in **PYTHIA** the less \star
- we believe to learn something from it. *
- \star Vary parameters (K, k_T, processes, PDF, m_C, etc.) within reasonable limits
- $\star \Rightarrow \sigma$ changes up to factor 2
- $\star \Rightarrow d\sigma/dp_T$ at high p_T up to a factor of 10

Cross Section Comparisons II

- NLO Calculations are better suited
- …but, extrapolation has large uncertainties, >50% (R. Vogt)
 - lower energy data differ by factors of 10 or more
 - ★ Choice of PDF
 - * Choice of m_c
- Measurements at RHIC might be in better agreement

STAR

The work has just begun...

- Direct open Charm D0, D* and D± were measured in d+Au collisions
- Single electron measurements agree with direct D measurements well.
- \star The D $p_{\rm T}$ spectral shape is about the same as the barequark distribution from the NLO calculation
 - * Very peaked fragmentation function?
- ★ Cross section (glass half empty/half full):
 - * PHENIX e in p+p : σ ~700 µb
 - * STAR D in d+Au: σ ~1.3 mb
 - * Actually, only 1.6 σ away... (not factors of >10)
 - * Maybe RHIC can become a better reference...

Time of Flight

Electron Background

Single
Electrons
Spectra γ conversion
 π^0 , η Dalitz decays
Kaon decays
 $\rho \omega \Phi$ vector meson decays
heavy quark semi-leptonic decay
others \rangle backgroundSingle
Electrons
 $\rho \omega \Phi$ vector meson decays
heavy quark semi-leptonic decay
others \rangle signal

 γ conversion and π^0 Dalitz decays are the dominant sources at low pt region.

For the γ conversion and π^0 Dalitz decay, background spectra are obtained from data using kinematical selection of the pairs in TPC

Charm p_T Spectrum

Charm pT spectrum can be fit well by the power-law function Charm meson ratios consistent with models and previous measurements

NLO order calculation was done by R. Vogt and FONLL code (fixed order NLO and resummations of next-to-leading logs) was obtained from M. Cacciaria and P. Nason, hep-ph0306212