A first look at open charm production in Indium-Indium collisions

motivation basic concepts of NA60 sources of background physics performance first qualitative results

Motivation: excess of intermediate mass dimuon production seen by NA38/NA50

The yield of intermediate mass dimuons in heavy-ion collisions (S-U, Pb-Pb) exceeds the sum of Drell-Yan and D meson decays, which describes the proton data

Charm enhancement or thermal dimuons ?

The intermediate mass dimuon yields can be reproduced :

- > by scaling up the charm contribution by up to a factor of 3 (!)
 - \rightarrow crucial to understand J/ ψ suppression: same initial state (gluons)
- > or by adding thermal radiation to the DY and open charm explicitly introducing a QGP phase at T_c = 175 MeV (Rapp & Shuryak, Gale)
 → would be a direct evidence of thermalization of the pre-hadronization phase

How to measure open charm in HI?

Explore lifetime of the D mesons:

 $D^+: c\tau = 312 \ \mu m$ $D^\circ: c\tau = 123 \ \mu m$

Select muons from $D \rightarrow \mu + X$ which do not converge to the interaction vertex.

This requires:

- precise knowledge of the vertex position
- > good resolution on the track impact at the vertex

Inverse: picking only muons strictly converging to the vertex we select prompt dimuons

Muon track matching

Matching between the muons in the Muon Spectrometer and the tracks in the Vertex Telescope is done using the weighted distance (χ^2) in slopes and inverse momenta. For each candidate a global fit through the MS and VT is performed, to improve kinematics

A certain fraction of muons is matched to closest non-muon tracks (fakes) ... \Rightarrow deteriorates kinematics and offset resolution.

Fake matches are subtracted by a mixed events technique: the muons are matched to tracks from different events (work in progress...)

In the present study the fakes are not subtracted

Level of fake matches

Combinatorial Background from $\pi, K \rightarrow \mu$ decays

Vertexing

- Robust algorithm resolves multiple vertices (provided they are on different targets)
- Good target identification even for the most peripheral collisions (\geq 4 tracks)

Beam Tracker measurement vs. reconstructed vertex

Measuring the muon track offset at the vertex

Offsets: ΔX , ΔY between the vertex and the track impact point in the transverse plane at Z_{vertex} .

Resolution depends on track momentum:

use **offset weighted** by the covariance matrices of the vertex and of the muon track

 $\sqrt{\left(\Delta x^{2} V_{xx}^{-1} + \Delta y^{2} V_{yy}^{-1} + 2\Delta x \Delta y V_{xy}^{-1}\right)/2}$

Fake matches tend to have large offsets: they degrade the charm selection capability.

Problem will be solved once their subtraction is under control

Measuring the muon track offset at the vertex

The "mixed" background sample must reproduce the offsets of the measured events: therefore, the offsets of the muons (of different events) selected for mixing must be replicated in the "mixed" event.

Prompt versus offsetted dimuon separation

Cut on the weighted offset of the muon closest to the vertex

Additional cut on weighted distance, Δ , between muons at Z_V to reduce influence of bad vertices

Prompt versus offsetted dimuon separation

Very crude Monte Carlo

Conclusions and outlook

- Comparison with Monte Carlo should be improved (e.g. pixel's efficiencies are being evaluated)
- Fake matches background must be subtracted (work in progress)
- ✓ Nevertheless, a charm signal is already visible
- NA60 is taking data with 400 GeV/c protons on Be, Al, Cu, In, Pb, W and U targets
- ✓ Expected statistics:
 - $\sim 500~000~J/\psi$ similar amount of open charm at 1.2 < M < 2.7 GeV/c²

reference for the studies of Indium-Indium data

