Dihadron fragmentation

in vacuum and in matter

Abhijit Majumder
Nuclear Theory Group,
Hard Probes 2004 Ericeira, Portugal
Nov. 4 - 10
LBNL

HEAVY-ION COLLISIONS AND JETS

Select a leading particle $4<p_{t}<6 \mathrm{GeV} / \mathrm{c},|\eta|<0.75$ Associate all other particles ($0.15<p_{t}<4 \mathrm{GeV} / \mathrm{c},|\eta|$ <1.1) with the leading particle.

RESULTS FROM STAR, heavy-ion collisions

- $d+$ Au central very similar to $p+p$
- Away side, central Au + Au suppressed

- Near side, central Au+Au unchanged
- Can explain the integral of the near side vs Npart.

RESULTS FROM HERMES, DIS on cold nuclei

double to single production

- Divide by same ratio in
deuterium to remove

detector systematics

$$
R_{2 h}=\frac{\frac{\text { No.of events with at least } 2 \text { hadrons with } z}{\text { No.of events with at least one hadron with }}}{\text { same ratio on deuterium }}
$$

TWO POSSIBILITIES!

PARTONIC ENERGY LOSS :

- High energy partons are created over the entire collision zone

- Lose energy by partonic interaction, medium may be hadronic or partonic
- Emerge as partons and then fragment
- Partonic energy loss models explain single inclusive suppression pretty well!
(GLV, BDMPS, WGZ, SW)
To explain double inclusive spectra requires a new phenomenological object: Dihadron fragmentation function!
$D_{q, g}^{h_{1} h_{2}}\left(z_{1}, z_{2}\right)$

HADRONIC ENERGY LOSS:

- Fragmentation occurs inside the hot medium
- Hadrons become independent due to scattering
- Each hadron suffers the same Energy Loss on average

Hadronic scattering models can explain mean single supp. ! ${ }_{11} 1_{22}$ Greiner et. al.@QM2004, V. Koch (unpublished!)

- Probability of observing two hadrons factorizes $P(1,2)=P(1) P(2)$
- Each probability is suppressed compared to $p+p: P(h)=s p(h)$
- Thus the conditional probability is also suppressed compared to $p+p$ collisions

$$
\frac{P(1,2)}{P(1)}=\frac{P(1) P(2)}{P(1)}=P(2)=s p(2)=s \frac{p(1) p(2)}{p(1)}
$$

$P(h)$ is for $A+A ; \quad p(h)$ is for $p+p$

- Hadronic absorption models cannot explain the double inclusive spectrum

Modification of Dihadron fragmentation function!

- Fragmentation functions are universal
- We have a definition in terms of operators
- Start with simple system : $e^{+} e^{-}$, can factorize $\quad \lambda^{2} \ll \mu^{2} \ll Q^{2}$
- Derive evolution (vacuum splitting functions same)
- Check with data and repeat in medium (similar to single)

- Evolving to a higher scale Q solving DGLAP equations
- Set of coupled differential equations containing the following processes:

Results from Event generators: JETSET
insist $z_{1}>z_{2}, \quad$ fit a function to it !

$D\left(z_{1,} z_{2}\right)=N z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}\left(z_{1}+z_{2}\right)^{\alpha_{3}}\left(1-z_{1}\right)^{\beta_{1}}\left(1-z_{2}\right)^{\beta_{2}}\left(1-z_{1}-z_{2}\right)^{\beta_{3}}$

Quark and Gluon evolution fits event generator data very well!
Thus we can understand evolution of FF from QCD.
the double to single ratio shows little change

Medium modification

- Apply to DIS of Nuclei (HERMES expt. at DESY)
- A parton in a nucleon is struck by EM probe
- Parton scatters in medium and then exits \&
fragments
- Fragmentation function is medium modified. The medum modification also has new set of duagrams!

DIS followed by di-hadron fragmentation from a large nuclei may be generally expressed as

$$
\frac{d^{2} W^{\mu \nu}}{d z_{1} d z_{2}}=\int d x \quad f_{q}^{A}(x) H^{\mu \nu} \tilde{D}^{h_{1}}
$$

$\tilde{D}=$ medium modified fragmentation fun

$$
\tilde{D}\left(z_{1}, z_{2}, \mu^{2}\right)=D\left(z_{1}, z_{2}, \mu^{2}\right)+\frac{\alpha_{s}}{2 \pi} \int_{0}^{\mu^{2}} \frac{d l^{2}}{l^{2}} \int \frac{d y}{y^{2}}\left(\frac{1+y^{2}}{1-y} T_{q g}\left(x, y, Q^{2}, l\right)+V . C . \mid D\left(z_{1}\left|y, z_{2}\right| .\right.\right.
$$

$$
\begin{array}{r}
T_{q g} \rightarrow \int d y \quad d y_{1} d y_{2}\langle A| \bar{\psi}(y) F\left(y_{1}\right) F\left(y_{2}\right) \\
\text { this } \sim A^{\frac{1}{3}}
\end{array}
$$

Luo, Qiu and Sterman PRD 50, 1951 (1994). Wang and Guo NP A696, 788 (2001).

PRELIMINARY!

Theory curve: (F F(2h)/FF(1h) in A) / (F F(2h)/FF(1h) in vac.)

Exp ratio $=$
No. of events with at least 2 hadrons with z_{1} $\frac{\text { No. of events with at least one hadron with }}{\text { same ratio on deuterium }}$

Dihadron results for hot medium

Very preliminary estimate for the same side two body correlation

Results include the effect of trigger bias.

Initiating parton in a heavy-ion collision has higher energy than that in p-p collision..

Summary \& Conclusions!

- We have defined a new phenomenological object in QCD:
" The Dihadron Fragmentation function "
- Demonstrated its factorization at LO in $e^{+} e^{-}$
- Derived it evolution equation (has extra components)
- Matched results with JETSET!!
- Allowed a physical understanding of change with scale
- Extended formalism to medium modification in DIS
- Extended formalism to medium modification in heavy-ion collision

Back up slides ...

Multiple higher twist diagrams need to be evaluated

 Multiple scatteringfrom soft gluons lead to LPM interference

Assume a Gaussian

(a)

$$
T_{q g}^{A}=C A^{1 / 3}\left(x G^{N}(x)\right)\left(1-e^{-x_{L}^{2} / x_{A}^{2}}\right)
$$

$\tau_{f}=$ Formation time
$R_{A}=$ Nuclear size

Fragmentation functions come from the soft matrix elements

$$
\begin{aligned}
& \text { where } \\
& \left.\hat{T}_{q}\left(p, p_{h}\right)=\int d^{4} x e^{-i p x} \sum_{S-1}|0| \psi(0) \mid p_{h}, S-1\right\} \mid\left(p_{h}, S-1\right. \\
& D_{q}\left(z_{1}, z_{2}\right)=\int \frac{d q^{2}}{8(2 \pi)^{2}} \frac{z^{4}}{4 z_{1} z_{2}} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{\gamma^{+}}{2 p_{h}^{+}} \delta\left(z_{1}+z_{2}-\frac{p_{h}^{+}}{p^{+}}\right) \hat{T_{q}}{ }_{q}(p\right. \\
& \text { A. Mueller, PRD 18, } 3705 \text { (1978). } \\
& \frac{\boldsymbol{\gamma}^{+}}{2 \boldsymbol{p}_{\boldsymbol{h}}^{+}} \delta\left(z_{1}+z_{2}-\frac{\boldsymbol{p}_{\boldsymbol{h}}^{+}}{\boldsymbol{p}^{+}}\right) \\
& =\frac{z^{4}}{z_{1} z_{2}} \\
& \begin{array}{l}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2}
\end{array} \\
& \boldsymbol{p}_{\boldsymbol{h}}^{+}=\boldsymbol{p}_{1}^{+}+\boldsymbol{p}_{2}^{+}
\end{aligned}
$$

