The Future of Hard and Electromagnetic Probes at the SPS

Hard Probes 2004 Ericeira/Portugal November 4 – 10, 2004

- Villars 2004 Official CERN Workshop
- Physics
 Photons
 Lepton Pairs
 Open Charm
 Charmonia
 (Jets)
- Boundary Conditions SPS FAIR, RHIC, LHC
- Conclusions
 The CERN View
 My View

Wednesday 22 September 2004 09:00->19:00	<u>Wednesday</u> 22 September	
Wednesday 22 September 2004 09:00->09:45	Opening Session	John B. Dainton
Wednesday 22 September 2004 09:45->16:00	<u>CERN</u> accelerators, performance and outlook	<u>John B.</u> <u>Dainton</u>
Wednesday 22 September 2004 16:30->18:45		Louis Kluberg
Thursday 23 September 2004 09:00->19:20	<u>Thursday, 23</u> September	
Thursday 23 September 2004 09:00->12:15		Louis Kluberg
Thursday 23 September 2004 14:00->19:30	<u>Neutrinos -</u> <u>Session 1</u>	David L. Wark
Friday 24 September 2004 09:00->22:00	<u>Friday 24</u> <u>September</u>	
Friday 24 September 2004 09:00->12:15	<u>Neutrinos -</u> Session 2	David L. Wark
Friday 24 September 2004 14:00->22:00	<u>Soft and hard</u> <u>hadrons -</u> <u>Session 1</u>	<u>Uta Stoesslein</u>
Saturday 25 September 2004 09:00->12:00	<u>Soft and hard</u> hadrons <u>-</u> <u>Session 2</u>	<u>Uta Stoesslein</u>
Saturday 25 September 2004 14:00->19:20	<u>Anti-protons -</u> Session 1	<u>Helena</u> Bialkowska
Sunday 26 September 2004 09:00->19:00	<u>Sunday 26</u> September	
Sunday 26 September 2004 09:00->12:20	<u>Anti-protons -</u> <u>Session 2</u>	<u>Helena</u> <u>Bialkowska</u>
Sunday 26 September 2004 14:00->19:30	<u>Heavy flavour</u> <u>- Session 1</u>	<u>Gautier Hamel</u> <u>de</u> <u>Monchenault</u>
Monday 27 September 2004 09:00->17:15	<u>Monday 27</u> <u>September</u>	
Monday 27 September 2004 09:00->12:00	<u>Heavy flavour</u> <u>- Session 2</u>	<u>Gautier Hamel</u> <u>de</u> <u>Monchenault</u>
Monday 27 September 2004 13:30->16:50	Other topics	John B. Dainton
Monday 27 September 2004 16:50->19:30	<u>Meeting</u> conclusions -	John B. Dainton

	Chair	person: Louis Kluberg
16:30	Experimental overview (1h00') (🖹 transparencies)	<u>Itzhak Tserruya</u>
17:30	Discussion (15')	
17:45	Theoretical overview (1h00') (🖹 transparencies)	<u>Bernd Mueller</u>
18:45	Discussion (15')	
	Cha	irperson: Louis Kluberg
09:00	NA49 prime - ions programme (35') (🖹 document 🖹 transparencies)	<u>Marek Gazdzicki</u>
09:35	Discussion (10')	
09:45	NA49 prime, astroparticle physics programme (10') (<u>transparencies</u>)	<u>Andreas</u> <u>Haungs</u>
09:55	Discussion (05')	
10:00	NA60:Study of dimuon and heavy-flavour production in proton-nucleus and heavy-ion collisions (45') (b <u>document</u> <u>transp</u>)	oarencies <u>Carlos</u> <u>Lourenco</u>
10:45	Discussion (15')	
11:00	Critical behaviour in QCD (30') (🖺 transparencies)	<u>Helmut Satz</u>
11:30	Availability of ions at the SPS (05') (🖹 transparencies)	<u>Jean-Pierre Riunaud</u>

What did we want to learn from em and $c\overline{c}$ probes?

Goals

- existence and properties of deconfined state
- nature of parameters of transition

new: critical point

• existence and parameters of chiral transition

Tools

- measure $\epsilon,$ measure $T \rightarrow get ~\nu$ from ϵ = νT^4 $(T{<}T_c,~T{>}T_c)$
- measure ρ meson behaviour \rightarrow disappearance for T>T_{\chi} (T<T_{\chi},T>T_{\chi})
- measure J/ ψ suppression $\ \rightarrow$ disappearance for T>T_c

(T<T_c, T>T_c)

SPS unique in terms of excitation functions

Possible Evidence for the Critical Point

Importance of excitation functions in narrow steps:

so far illustrated only for soft probes: particle yields, v₂, HBT....

Most interesting result: K^+/π^+ , T_{K^+} ; first "discontinuity"?

What did we achieve?

Durk	Range	Full energy 158 AGeV/c		Excitation function 80/40/30/20 AGeV/c		
Probe		AA PbPt	D	Comparison pp,pA	AA PbPl	Comparison pp,pA
Photons	p _t <0.1 (GeV/c)	-	+		-	-
	0.1 <p<sub>T<1.5</p<sub>	-	-		-	-
	p _⊤ >1.5	(+)	-		-	-
Lepton Pairs	m<0.2 (GeV/c²)	-	(+)		-	-
	0.2 <m<1.2< td=""><td>(+)</td><td>+</td><td></td><td>(+)</td><td>-</td></m<1.2<>	(+)	+		(+)	-
	m>1.2	(+)	(+)		-	-
Open charm	Identif. comb. <i>l+t</i>	-	-		-	-
	Identif. D-decays	-	(+)		-	-
Charmonia	J/ψ, ψ'	(+)	(+)		-	-

No usable temperature measurement yet No solid proof of ρ change yet No measurement of charm level yet No clear understanding of J/ψ suppression yet

Dynamic range of photon measurements

- Bremsstrahlung
- thermal radiation
- 0.001<p_T<0.1 (GeV/c)
- 0.1<p_T<5
- hard parton processes p_T>3
- \rightarrow potential dynamic range >10³

compare to em radiation in astronomy today

 \rightarrow radio, IR, visible, UV, X, γ

Photon reality in AA

problems

- usable dynamic range <2
- no pA comparison data
- model ambiguities

- \rightarrow large ambiguities in $% \mathbf{T}_{i}$ extraction of \mathbf{T}_{i}
- Gale (HP2004) 205 MeV
- Rapp and Shuryak (2000) 210 MeV
- Gale (HP2004) 270 MeV
- Srivastava (2001) 330 MeV

Dynamic range of photons and present reality

Usable dynamic range <2 → just the "visible light" of astronomy but 2 new points

Can we do better?

p_T<1.5 GeV/c: precision instrumentation

p_T<0.1 GeV/c: definitely feasible

Soft Photon Bremsstrahlung

photons from virtual particles

(b)

pp, pA

AA

incoherent Bremsstrahlung:

hadrons radiate independently

"coherence":

hadrons radiate, not partons inside

coherent Bremsstrahlung: nuclei radiate, not hadrons inside $\rightarrow \sigma \sim Z^2 \, ! \rightarrow$ collision dynamics

other sources of soft photons "(first) window to chiral symmetry?" C.Gale, HP2004

in the soft photon limit k = 0

unique volues for Go and Ge; calculable from scattering amplitudes without photon radiation

" bremsstrahlung determined by "outer particle lines"

Soft Photon Bremsstrahlung

pBe at 450 GeV/c SOPHY/BACY within HELIOS/NA34

Anthos et al., Z.Phys. C59 (1993) 547

Dynamic range of lepton pair measuremens

- Bremsstrahlung 0.001<m<0.1 GeV/c² (plot m>0.02, but pp data!)
- thermal radiation 0.1<m<1.2 (light vector meson spectral densities)
- thermal radiation 1.2<m<3 (continuum regime)
- hard parton process (DY) p_T>1.2 (dominant for p_T>3)
 - \rightarrow potential dynamic range of >10³

Low Mass Electron Pairs/CERES

mechanism open: disappearance of vacuum ρ?
 ρ melting à la Brown-Rho scaling?
 ρ melting à la Rapp/Wambach?
 qq annihilation?

Low Mass Lepton Pairs/ CERES

only example for a measurement of an electromagnetic/hard probe at a lower SPS energy!

statistics (180) 30 pairs

enhancement (40 AGeV) > enhancement (160 AGeV) → baryons driving ρ melting?

→ precision measurements of low mass lepton pairs at lower SPS energies absolutely vital (will never come from RHIC)

Low Mass Lepton Pairs/NA60

Statistics, mass resolution and multiplicity dependence should bring a major advance in the understanding of low mass lepton pair production

Soft Electron Pairs

→ explore π^0 Dalitz region (absolute normalization required) S/B ratio may stay >1.2

Soft electron pairs have analogous information to soft photons

"Quasi Real" Photons?

basic idea: use lepton pairs with small mass m select p_T>> m →virtual photons close to the pole

problem:

relative to $\pi^0, \eta \rightarrow \gamma \gamma$

Dalitz suppressed by factor $\boldsymbol{\alpha}$

relative to γ

 $\gamma^* \rightarrow l^+ l^-$ suppressed by factor α

 \rightarrow probably no net gain

Intermediate Mass Open Pairs/NA50

Charm enhancement or thermal dimuons ?

The intermediate mass dimuon yields can be reproduced :

> by scaling up the charm contribution by up to a factor of 3 (!)

> or by adding thermal radiation to the DY and open charm

Evidence for Open Charm/NA60

Significant offset yield in the mass region 1.2<m<3 GeV/c², but also between the ω and the ϕ and below the ω

D-decays

RHIC:at least in d+Au:several D-decays (2 and > 2-body) identified

SPS:great history in pp(the experimental revolution of Si-strip detectors)

no transfer of that culture to the initial AA program

CERES ? NA60 ?

A dedicated new effort ?

J/ψ suppression/NA50 +NA60

- Is the deconfined phase reached through a geometrical transition (percolation) or through a thermal transition (QGP) ?
- > does the J/ψ melt through initial-state parton density (structure functions) or final state-parton density (QGP)?

Percolation at SPS Energies/H.Satz

Excitation Function of Charm and Charmonia Production

Can the physics of J/ ψ , ψ ' and open charm be done at lower energy than 158 AGeV?

energy (AGeV)	158	40	
σ _{rel}	1	0.08 0.08	
<y></y>	3.5	3.5 2.2	
rel. loss	1	0.2 1	
rel. total	1	0.016 0.08	
J/ψ's	100000	1600 8000	

GSI quotation:

 $10^5 \; J/\psi$ /week at 25 AGeV !

Luminosity

Luminosity, Luminosity, Luminosity!

Availability of Heavy Ions for SPS Fixed Target Physics

Until Nov. 2003, Heavy lons for Fixed Target physics were produced via :

Ions source – Linac 3 - PS Booster – PS - SPS

Since then, the production of Lead lons for LHC has started via :

(new) lons source – Linac 3 - LEIR – PS - SPS

⇒ The previous Heavy lons route via the PSB is not available anymore as synchronisation PSB/Linac3 has been disactivated and converted into a synchronisation LEIR/Linac3

J.P.Riunaud Villars 2004

Availability of Heavy Ions for SPS Fixed Target Physics

Planning of the Lead lons for LHC :

- Linac3 start up with Pb ions 02/2005
- Linac3 to LEIR injection line commissioning 06/2005 to 08/2005
- LEIR commissioning 08/2005 to 03/2006
- PS commissioning : 25 shifts in 2006 (6 dedicated MDs)
- SPS commissioning : 34 shifts in 2007 (24 dedicated MDs)
- LHC commissioning and physics with "early beam" : 2008
- ⇒ Lead ions can only be available for Fixed Target physics
- when they are available in the SPS and
- when they have been tuned for Fixed Target operation (different beam in SPS than for LHC)

⇒ With the present I-LHC schedule, Lead ions can only be available after the ion LHC commissioning in 2008

The future Facility for Antiproton an Ion Research (FAIR)

Conclusions on future SPS Running

Full Energy

continuation of NA60 with Pb-Pb (a must !)

- low mass pairs
- intermediate masses
- J/ψ physics

Full and lower energies

(continuation of NA49)

continuation of NA60

- low mass pairs
- intermediate masses
- J/ψ physics

dedicated experiment on real photons

- better data for all p_T
- soft photons (a must!)

soft electron pairs?