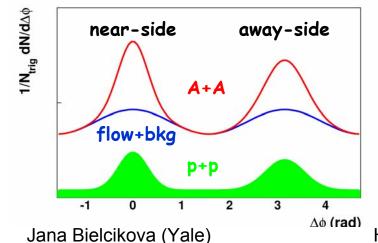

Semihard scattering unraveled from collective dynamics at the SPS

Jana Bielcikova (Yale University) for the CERES Collaboration

- Motivation
- CERES experiment
- Elliptic flow vs two-pion azimuthal correlations
- Semihard interpretation and properties of non-flow component
- Summary

How to unravel semihard processes from collective dynamics?

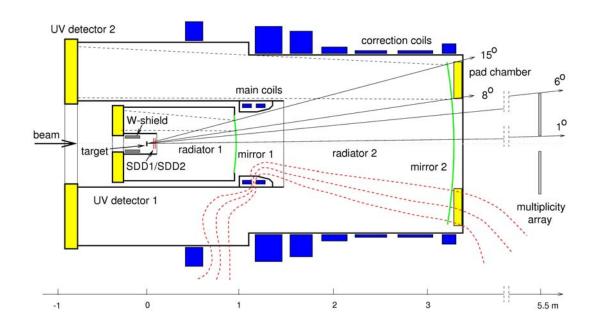


Use two-particle azimuthal correlations at high-p_t!
They are sensitive to flow and (semi)hard particle-particle correlations.

 correlation of particles with event plane (EP) induces correlations between particles

$$\frac{dN}{d(\phi_i - \phi_j)} = B(1 + \sum_{n=1}^{\infty} 2(v_n^2) \cos(n(\phi_i - \phi_j)))$$

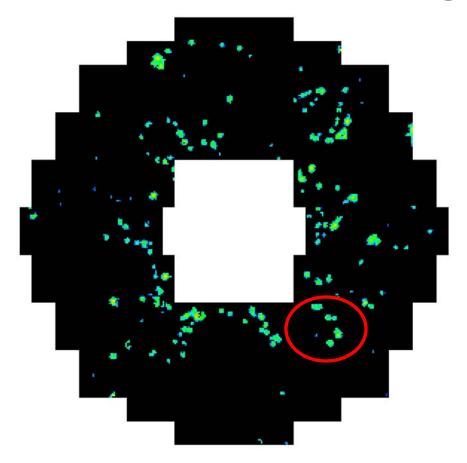
direct correlations:
 v_n(correlation) ≠ v_n(EP)

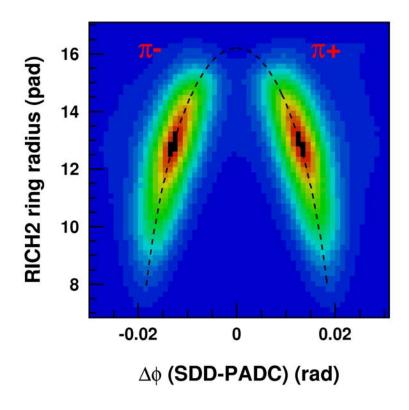


CERES spectrometer

Detectors:

- SDD1,SDD2: vertex, centrality, event plane
- RICH1,RICH2: PID
- MWPC: tracking
- magnetic field: azimuthally symmetric
- charged hadrons: vertex+SDD+MWPC no PID (statistical)
- high-p_t pions:
 identified by RICH
 γ_{th}~32
 p>4.5 GeV/c


Jana Bielcikova (Yale)

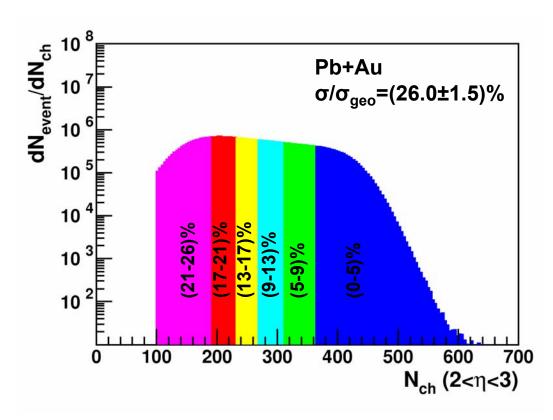


1996 setup (before TPC upgrade)

Acceptance: $2.1 < \eta < 2.6$ full azimuth

Identification of high-p_t pions in RICH

 γ_{th} ~32 \Longrightarrow p_{min} >4.5 GeV/c π distinguished from e by smaller ring radius

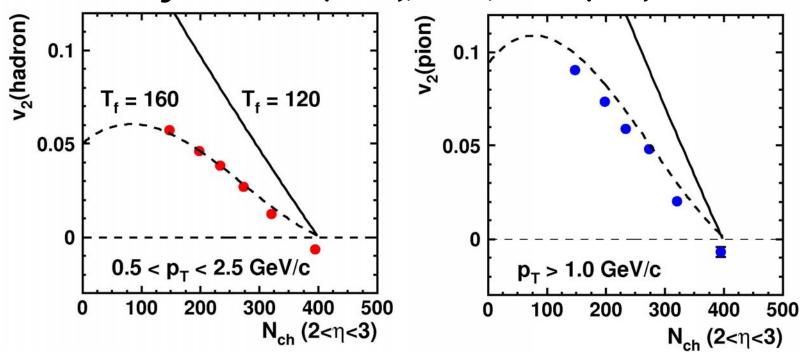

Jana Bielcikova (Yale) Har

Hard Probes 2004

$$R = R_{\infty} \sqrt{1 - \left(\frac{m\gamma_{th}}{p}\right)^2}$$

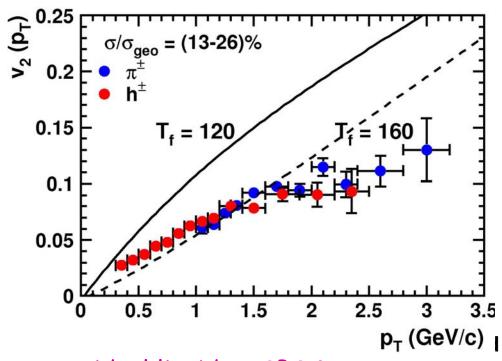
Data analysis

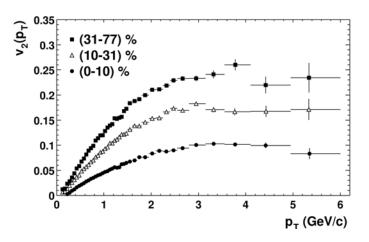
- 41M of Pb+Au collisions (\sqrt{s} =17GeV) \odot
- centrality determined from N_{ch} in SDD
- Glauber model to calculate N_{part} and N_{coll}


Pion analysis:

 $p_{t}>1.2 \ GeV/c$: N(pions/event) ~ 2×10^{-2} N(pion pairs/event) ~ 4×10^{-4}

reconstruction efficiency ϵ : from overlay Monte-Carlo 3-dim ϵ = f(p,N_{ch}, θ) (ϵ =0.1-0.4) \otimes


Centrality dependence of v₂

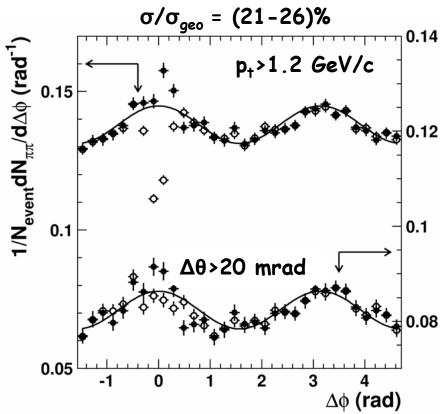


- hydrodynamical calculation: P. Huovinen (T_f=120/160MeV)
- better agreement for $T_f=160 \text{MeV}$ but proton spectra are too steep

Transverse momentum dependence of v₂

RHIC: v_2 saturates for $p_t>2$ GeV/c and below is described by hydro

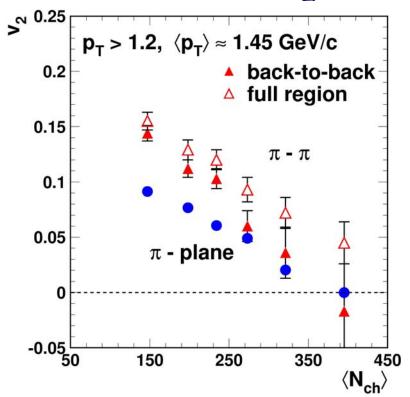
STAR PRL 90, 032301 (2003)

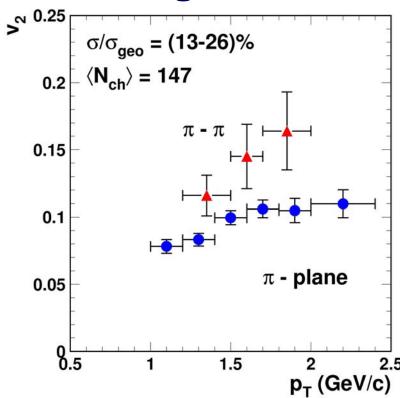

 non-ideal liquid at SPS?
 viscosity needed (D. Teaney, E. Shuryak: nucl-th/0204023, nucl-th/0301099)

- v₂ flattens at p_t~1.5 GeV/c
- v₂(SPS) ~ 2/3 v₂(RHIC)

Jana Bielcikova (Yale)

Hard Probes 2004

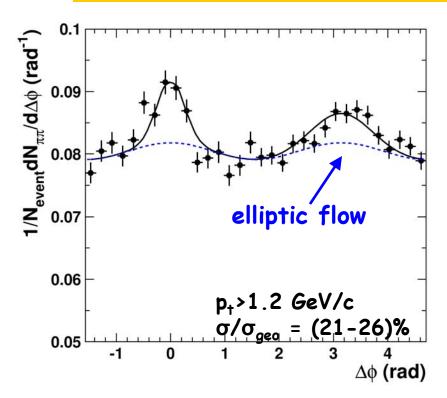

Two-pion azimuthal correlations



- open symbols: raw data
- closed symbols: MC corrected

- $\Delta \phi \sim 0$ region strongly affected by two-track resolution (RICH) -> Monte-Carlo (MC) correction
- reject tracks close in polar angle (Δθ < 20 mrad) and apply MC correction of efficiency loss

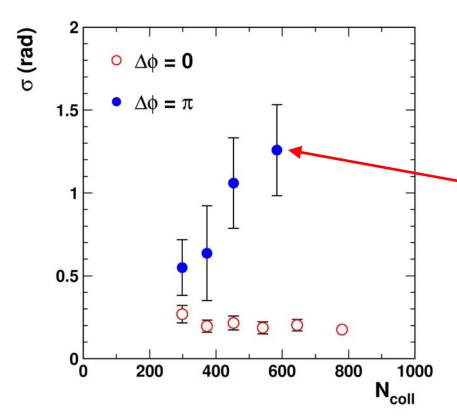
Do both 'v2' have same magnitude?



- v_2 from π - π correlation is systematically higher than v_2 from EP analysis
- this difference grows with pt
- non-flow component is present!

Semihard interpretation of non-flow component

$$\frac{dN}{d(\Delta\phi)} = B(1 + 2(v_2^{EP})^2 \cos(2\Delta\phi)) + A_0 e^{-\frac{\Delta\phi^2}{2\sigma_0^2}} + A_{\pi} e^{-\frac{(\Delta\phi - \pi)^2}{2\sigma_{\pi}^2}}$$



Peaks have different widths:

near-side: σ_0 =(0.27±0.05) rad fragmentation?

away-side: σ_{π} =(0.55±0.17) rad in-medium re-scattering?

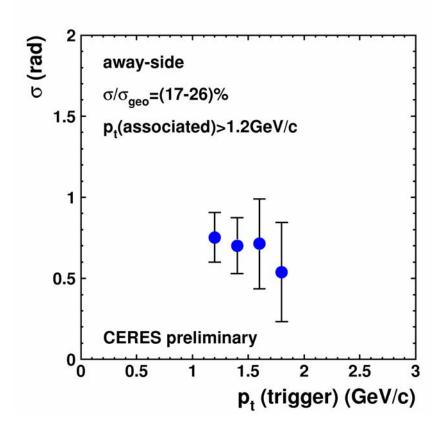
Near-side and away-side peaks: centrality dependence of Gaussian widths

fragmentation

$$\langle |j_{T_y}| \rangle = (190 \pm 25) \text{ MeV/c}$$

p+-broadening

$$\langle |k_{Ty}| \rangle = (2.8 \pm 0.6) \, GeV/c$$

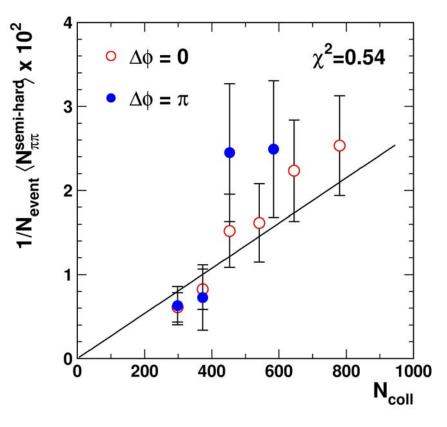

in p-A collisions
M.D.Corcoran, PLB259 (1991)

very close to RHIC values
J.Rak (PHENIX), J.Phys. G30 (2004)

 σ_0 is constant with centrality

 σ_{π} increases with centrality

Near-side and away-side peaks: pt dependence of Gaussian width



 σ(p_t) of away-side peak decreases with increasing p_t(trigger)

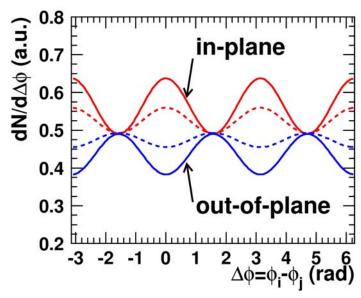
statistical errors large 🕾

• $\sigma(p_t)$ of near-side peak under study (Monte-Carlo correction of $\Delta \phi \approx 0$ region vs p_t needed)

Near-side and away-side peaks: centrality dependence of semihard yield

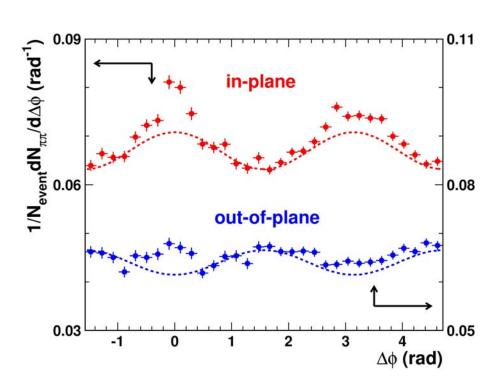
- π - π yield is defined as area under a Gaussian peak
- consistent with binary scaling
- away-side peak disappears in central collisions as at RHIC

STAR: PRL90 082302 (2003)


no 'jet-quenching'

Are semihard pion pairs correlated with event plane?

fix one pion in the in plane (out of plane) cone and look at the correlation


Jana Bielcikova (Yale)

- condition that particle is out-of-plane shifts flow pattern by $\pi/2$
- influence of the EP resolution has to be accounted for (dashed)

J. Bielcikova, S. Esumi, K. Filimonov, S. Voloshin, J.P. Wurm, PRC69, 021901(2004)

Observed in-plane and out-of-plane azimuthal correlations

dashed line: expectation from elliptic flow

- data lie above the flow reference
- yield in/out-of-plane: near-side peak: 1.32±0.37 (stat.)

away-side peak: 1.39±0.44 (stat.)

syst. error estimate 15%

 weak preference to event plane orientation

Summary

We observe semihard two-particle correlations of charged pions embedded in elliptic flow at the SPS.

Elliptic flow:

- flattens at $p_+>1.5$ GeV/c (similar to RHIC)
- ideal hydro does not fully describe the data -> non-ideal fluid at the SPS (viscosity needed)?

Two-particle correlations:

- yield of pion pairs grows with N_{coll}
- away-side peak: centrality dependent broadening $\sigma(p_+)$ decreases with p_+
- near-side peak: $\sigma(N_{coll})$ is constant (fragmentation?)
- both components show a weak preference to the event plane orientation