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1. Motivation and formalism.

2. Exercises:

• LHC: jet shapes.

• RHIC: widths of particle distributions.

• RHIC: elliptic flow.

3. Summary.

With C.A. Salgado and U.A. Wiedemann, hep-ph/0405301 (PRL) and in preparation.
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Motivation: Néstor Armesto

• Strong momentum-position correlations in the expanding medium are
suggested by the success of hydro at low pT : collective flow.
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• Radiative energy loss is determined by momentum exchanges
perpendicular to the trajectory of the parton.

• Idea: if the jet is produced in a frame not co-moving with the collective
flow, momentum exchanges become anisotropic and an additional
contribution to energy loss comes from flow.
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Formalism (I): Néstor Armesto

Tµν(x) = (ε + p) uµ uν − p gµν , uµ = γ(1, ~β).

• Estimation: T ii∗ = p → T ii = p + ∆p, where
∆p = (ε + p)ui ui = 4 p γ2β2 (ideal EOS ε = 3 p) −→ rapidity difference
η = 0.5, 1.0, 1.5 between frames =⇒ ∆p/p ' 1, 5, 18.

parton

flow

0q |a(q)|2 =
µ2

π [(q− q0)2 + µ2]2
.

• We modify the Yukawa-like scattering potential. We consider (Baier ’02)

q̂ =
µ2

λ
∝ n σ, q̂

[

GeV2/fm
]

= c ε3/4
[

(GeV/fm3)3/4
]

=⇒ q0 ∼ µ.

• Dilution of the medium (Baier, Dokshitzer, Mueller, Schiff, ’98; Gyulassy, Vitev, Wang, ’00)

can be taken into account by rescaling q̂ (Salgado, Wiedemann, ’02):

〈q̂〉 =
2

L2

∫

dτ τ q̂(τ).
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Formalism (II): Néstor Armesto

• In the single hard scattering approximation (Wiedemann, ’00; Gyulassy, Levai,

Vitev, ’00),

ω
dImed

dω dk
=

αs

(2π)2
4 CR n0

ω

∫

dq |a(q)|2 k · q
k2

−L (k+q)2

2ω + sin
(

L (k+q)2

2ω

)

[(k + q)2/2ω]
2 .

Similar results (Salgado, Wiedemann, ’03) in BDMPS (Baier, Dokshitzer, Mueller, Peigné,

Schiff, ’96), σ(r) = 2
∫

dq |a(q)|2
(

1 − e−iq·r
)

, n(τ) σ(r) ' 1
2 q̂(τ) r2.

jet

gluon

beam

k

β

α

φ

ω

k dk dα = ω2 cosφ

cosh3 η
dη dφ

(it already induces an η −
φ-asymmetry).
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Jet shapes with flow (I): Néstor Armesto

• For the vacuum, R =
√

η2 + φ2,

ρvac(R) ≡ 1

Njets

∑

jets

ET (R)

ET (R = 1)

taken from D0 (LHC: pp and pA refer-
ences needed).

• n0 L αs CR = 1, L = 6 fm =⇒
the jet center is not too displaced.
→ p̄p: R = 0.7 ÷ 1 (Ewithin ' 100%).
→ PbPb at LHC: R = 0.3 ÷ 0.4
(Ewithin ' 75 ÷ 80%).
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Jet shapes with flow (II): Néstor Armesto
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• 100 GeV jet; µ = 1 GeV, q0 =
µ =⇒ 〈∆η〉R<0.3 ' 0.04, ∆ET =
∫

dωω dImed

dω = 23 GeV redistributed by
medium-induced gluon radiation.

• Clear asymmetry. If flow comes
equally from both +η and −η, width in
η becomes larger than in φ (dη dφ =
R dR dα′).
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Modification of ‘jet’ multiplicity: Néstor Armesto

• RHIC: no calorimetric jets −→ study the associated multiplicity
(radiation) (STAR: nucl-ex/0411003; talk by Magestro).

• We compute the medium-induced gluon radiation; vacuum particle
distribution is taken from pp data.

• We take a 10 GeV parton, L = 2 fm
(near side jet), µ = 0.7 ÷ 1.4 GeV, and
q0/µ = 4 ÷ 2.

• Preliminary STAR data: F.Wang at
QM04, near-side charged distribution
associated to trigger with 4 GeV <

ptrigger
T < 6 GeV in AuAu@200 GeV.

• With radiative E-loss, the widths are
expected to increase with decreasing
pT = ω: sin2 θ = k2

T /ω2 '
√

q̂ω/ω2,
and radiation is harder than in vacuum.

• Uncertainties at RHIC large (Salgado, Wiedemann, ’03); as an example of
application, ignoring them and using this preliminary data,
q0/µ = 4 =⇒ ∆η ∼ 1 between flow and hard-parton co-moving frames.
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Contribution to elliptic flow (I): Néstor Armesto

b

θ
r0

s−bs
• Parton produced at (x0, y0) according to
TA(s) TB(b − s), with trajectory r0(ξ) =
(x0 + ξ cos θ, y0 + ξ sin θ) uniform in θ (Gyulassy,

Vitev, Wang, ’00).

• Medium characteristics q̂ and L (Baier, Dokshitzer, Mueller, Peigné, Schiff, ’96),
redefined (Salgado, Wiedemann, ’03) in the static case to ωc = q̂L2/2, R = ωcL,
are computed (Dainese, Loizides, Paic, ’04; Eskola, Honkanen, Salgado, Wiedemann, ’04):

ωc(x0, y0, θ) =

∫

∞

0

dξ ξ q̂(ξ) Ω(r0(ξ)) ,

(q̂L) (x0, y0, θ) =

∫

∞

0

dξ q̂(ξ) Ω(r0(ξ)) , R = 2
ω2

c (x0, y0, θ)

(q̂L) (x0, y0, θ)
,

with Ω(r) a time-dependent density distribution of produced matter.

• For a given flow field (Lisa, Retière, ’03), we take the simple ansatz

q̂(ξ) = q̂nf + q̂flow|u(r0(ξ)) · nT |2 , nT · r0(ξ) = 0.
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Contribution to elliptic flow (II): Néstor Armesto

• Flow effect clear in the param-
eters which determine E-loss:
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• Exercise for semi-peripheral AuAu:

N(x0, y0, θ, pT ) = dσmed

dpT

/

dσvac

dpT

, pT =

5 GeV/c (Salgado, Wiedemann, ’03),

• Effect on v2 is not large, (Wang, ’03; Drees,

Feng, Jia, ’03); flow effects may mimic a
higher density.

Flow effects on jet profiles and multiplicities: 2. Exercises: RHIC: elliptic flow. – p.9



Contribution to elliptic flow (II): Néstor Armesto

• Flow effect clear in the param-
eters which determine E-loss:

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=0
nfq
fq

=0θ

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=4
nfq
fq

=0θ

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=0
nfq
fq

4
π=θ

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=4
nfq
fq

4
π=θ

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=0
nfq
fq

2
π=θ

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=4
nfq
fq

2
π=θ

• Exercise for semi-peripheral AuAu:

N(x0, y0, θ, pT ) = dσmed

dpT

/

dσvac

dpT

, pT =

5 GeV/c (Salgado, Wiedemann, ’03),

• Effect on v2 is not large, (Wang, ’03; Drees,

Feng, Jia, ’03); flow effects may mimic a
higher density.

Flow effects on jet profiles and multiplicities: 2. Exercises: RHIC: elliptic flow. – p.9



Contribution to elliptic flow (II): Néstor Armesto

• Flow effect clear in the param-
eters which determine E-loss:

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=0
nfq
fq

=0θ

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=4
nfq
fq

=0θ

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=0
nfq
fq

4
π=θ

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=4
nfq
fq

4
π=θ

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=0
nfq
fq

2
π=θ

-4 -2 0 2 4

-4

-2

0

2

4

x (fm)

y 
(f

m
)

nfq
cω

=4
nfq
fq

2
π=θ

• Exercise for semi-peripheral AuAu:

N(x0, y0, θ, pT ) = dσmed

dpT

/

dσvac

dpT

, pT =

5 GeV/c (Salgado, Wiedemann, ’03),

• Effect on v2 is not large, (Wang, ’03; Drees,

Feng, Jia, ’03); flow effects may mimic a
higher density.

Flow effects on jet profiles and multiplicities: 2. Exercises: RHIC: elliptic flow. – p.9



Summary: Néstor Armesto

♣ We have performed an exploratory study of the effects of flow on
medium-induced energy loss by gluon radiation.

♣ Jets at LHC may show a clear η −φ-asymmetry (they will be produced
abundantly: Yellow Report on Hard Probes in HIC at the LHC, ’03; Salgado, Wiedemann, ’03).

♣ At RHIC: flow can produce asymmetries in associated particle
production and a modest increase of elliptic flow.

♣ These effects may make the determination of densities from jet
quenching studies more involved: flow may mimic energy density.

♣ Theoretical uncertainties exist: finite energy corrections,
hadronization (pp and pA data required!),. . .

BUT

even a negative result provides information about the space-time
evolution of the system (hard production coupled to the flow?) −→
compute it within a full hydrodynamical simulation (Hirano, Nara, ’02; ’03).
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