Neutral pion production in d-Au collisions at $\sqrt{s_{NN}}$ =200 GeV

André Mischke

Universiteit Utrecht

for the STAR Collaboration

Hard Probes conference Ericeira, Portugal, November 4-10, 2004

Outline

L3 display of a central Au-Au event at \sqrt{s} =200 GeV February 2004

- High-p_T measurements in STAR
- The STAR experiment
- Neutral pion analysis
- Results
- Summary and outlook

High-p_T hadron suppression

- Central Au-Au collisions:
 - Strong high-p_T particle suppression
- → Medium induced parton energy loss
- d-Au collisions (cold nuclear matter):
 - No particle suppression
 - Cronin effect instead
- \rightarrow Suppression is a final state effect

Andre Mischke (UU)

R_{CP}: Particle species dependence

Andre Mischke (UU)

The STAR detector

- Large acceptance hadron experiment
- Solenoidal field (0.5 T)
- TPC's, ToF, SVT, PMD, and EMC's

Andre Mischke (UU)

Barrel Electromagnetic Calorimeter

- One of the short-term upgrades
- Lead-scintillator sampling calorimeter
- 120 modules with 4800 towers
- $|\eta| \le 1$ and full azimuthal coverage
- For the 2003 run: 50% installed and operational
- Tower
 - 21 radiation length (X₀)
 - $(\Delta\eta, \Delta\phi)_{tower} \sim (0.05, 0.05)$
 - dE/E ~16%/√E

BEMC (cont'd)

- Shower maximum detector (SMD)
 - located after 5 X_0
 - wire proportional counter with strip read-out
 - 150 x 150 strips per module
 - large spatial resolution $(\Delta\eta, \Delta\phi)_{\text{SMD}} \sim (0.007, 0.007)$
- Pre-shower detector (PSD)
 - π^0/γ and e/h discrimination
 - separate read-out of the first two layers
- 45,600 channels in total

BEMC calibration

Andre Mischke (UU)

Event selection

- Minimum bias trigger: ZDC-Au (95±3% of $\sigma_{\text{hadronic}})$
- High tower trigger:
 - Enhance high- p_T range
 - Photons, electrons and π^0
 - Trigger patches
 - 4 x 4 towers
 - ($\Delta\eta$, $\Delta\phi$) ~ (0.2, 0.2)
 - Highest tower in patch 0.5 GeV energy resolution
- Trigger classes
 - Minimum bias
 - High tower 1: energy threshold >2.5 GeV
 - High tower 2: energy threshold >5.0 GeV

Pre-scale factors

- For high tower trigger spectra normalization
- BEMC cluster with the highest transverse energy
- Enhancement of about
 50 at 4 GeV/c (HT1/MB)
 and 6 at 6 GeV/c (HT2/HT1)

Andre Mischke (UU)

Neutral pion analysis

- Event cuts
 - Number of Bemc hits
 - Main z-vertex
- π^0 reconstruction
 - $\pi^0 \rightarrow \gamma \gamma$ (branching ratio: 98.8%)
 - $m_{inv} = \sqrt{2E_1E_2(1-\cos\theta)}$
- Photon quality cuts
 - Charged particle veto using TPC
 - Asymmetry of photon pair:
- Combinatorial background of random pairs described by
 - Event-mixing method
 - Polynomial fit (2nd order)

π^0 analysis: Tower sub-sample

- Tower/SMD Quality Assurance (status tables) are underway
- QA: Single tower invariant mass spectra

- Use π^0 peak position for additional tower gain correction (mean correction 7%)
- Sub-sample of good towers
- pi0 analysis

π^0 invariant mass distribution

- MinBias, p_{T} integrated • S/B ratio ~2.5
- Mass = 135±1 MeV

- - 9k raw π⁰
- Width = 28±0.6 MeV

Andre Mischke (UU)

Signal extraction and corrections

- 0.5 (1) GeV bins for MB (HT1,2)
- Yield extracted by integration of the background subtracted distribution $\pm 3\sigma$ around signal
- Corrections
 - Detector efficiency
 - Acceptance
 - MC simulation
 - Cluster density effects not yet included
 - Losses due to weak decays,

e.g. K⁰, not included yet

Systematic errors

- Yield extraction: 10-15%
- Pre-scale factor: 6% (HT1), 10% (HT2)
- Quality cuts (acceptance + efficiency included): 20-30%

• Energy calibration uncertainty: low-pT (<6 GeV/c): 5-10% high-pT (>6 GeV/c): 30%

π^0 transverse mass spectrum

PHENIX data: PRL 91, 072303 (2003)

- Neutral pion p_T measurement up to 13-16 GeV/c
- Agreement with PHENIX measurement within 10%

Comparison with NLO pQCD calculations

• Werner Vogelsang

- Nuclear effects included
- PDFs: Frankfurt et al. (CTEQ6M)
- Fragmentation fct.: Kniehl et al.
- no Cronin effect included
- 10% normalization uncertainty
- Reasonable agreement within errors
- Energy calibration at high p_T under investigation

Andre Mischke (UU)

Hard Probes 2004, 10 November

R_{dAu} for neutral pion

p-p reference for neutral pions: power law fit to PHENIX data, PRL 91 (2003) 241803

Summary and Outlook

- Preliminary neutral pion p_T spectrum from d-Au collisions at $\sqrt{s} = 200 \text{ GeV}$
- Good agreement with earlier PHENIX $\pi^{\rm 0}$ and STAR charged hadron measurement
- Reasonable agreement with NLO pQCD calculations
- Next
 - π^0 spectra in Au-Au (\sqrt{s} = 62.4 and 200 GeV)
 - Heavy mesons: $\rho^{\pm}(770)$ and $\omega(782)$
 - Direct photons

The STAR collaboration

49 institutes from 13 countries, 522 participants

Andre Mischke (UU)

Additional slides

Andre Mischke (UU)

Normalization of the Combinatorial Background

• Checked with "integral" normalization

 Well described up to 5 GeV/c

Andre Mischke (UU)