Relating IA, pA and AA data through geometric scaling

Carlos A. Salgado

CERN, TH-Division

Based on: Armesto, Salgado, Wiedemann hep-ph/0407018

carlos.salgado@cern.ch, http://home.cern.ch/csalgado

HP2004, Ericeira, November 2004

 \Rightarrow The total γ^*h cross section is in the dipole model

$$\sigma_{T,L}^{\gamma^* h}(x,Q^2) = \int d\mathbf{r} \int_0^1 dz |\Psi_{T,L}^{\gamma^*}(Q^2,\mathbf{r},z)|^2 \,\sigma_{\rm dip}^h(\mathbf{r},x) \,,$$

$$\mathbf{Y} | \Psi_{T,L}^{\gamma^*}(Q^2,\mathbf{r},z) |^2$$
 is the $\gamma^* \to q \bar{q}$ wave function

 \checkmark $\sigma_{dip}^{h}(\mathbf{r}, x)$ is the $q\bar{q} - h$ total cross section

$$\sigma_{\mathrm{dip}}^{h}(\mathbf{r}, x) = 2 \int d\mathbf{b} N_{h}(\mathbf{r}, x; \mathbf{b})$$

⇒ The evolution in $y \equiv \log x_0/x$ of $N_h(\mathbf{r}, x; \mathbf{b})$ can be computed from QCD. In saturation models

[e.g. the Balitsky–Kovchegov equation see talk by G. Milhano]

 \mathbf{Y} A saturation scale Q_{sat}^2 appears

$$\checkmark$$
 $N_h(\mathbf{r}, x; \mathbf{b}) = N_h(\mathbf{r}Q_{\text{sat}}(x, \mathbf{b})) \longrightarrow$ Geometric scaling

Is this geometric scaling present in data??

HP2004, Ericeira, November 2004

 \Rightarrow For massless quarks, (no impact parameter dependence)

$$|\Psi_{T,L}^{\gamma^*}(Q^2,\mathbf{r},z)|^2 = Q^2 f(r^2 Q^2) \longrightarrow \sigma_{T,L}^{\gamma^*h}(x,Q^2) = \sigma_{T,L}^{\gamma^*h}(Q^2/Q_{\text{sat}}^2(x))$$

$$N_h(\mathbf{r}Q_{\text{sat}})$$

 \Rightarrow For massless quarks, (no impact parameter dependence)

$$|\Psi_{T,L}^{\gamma^*}(Q^2, \mathbf{r}, z)|^2 = Q^2 f(r^2 Q^2) \longrightarrow \sigma_{T,L}^{\gamma^* h}(x, Q^2) = \sigma_{T,L}^{\gamma^* h}(Q^2/Q_{\text{sat}}^2(x))$$

$$\boxed{N_h(\mathbf{r}Q_{\text{sat}})}$$

⇒ With impact parameter: suppose all the *b* dependence can be scaled—out by the radius R_h : $\bar{b} = b/\sqrt{\pi R_h^2}$

$$\int d^2 b \, N_h \left(r \, Q_{\text{sat},h}(x,b) \right) \quad \longrightarrow \quad \pi R_h^2 \int d^2 \bar{b}, N_h \left(r \, Q_{\text{sat},h} \left(x, \bar{b} \right) \right)$$

 \Rightarrow For massless quarks, (no impact parameter dependence)

$$|\Psi_{T,L}^{\gamma^*}(Q^2, \mathbf{r}, z)|^2 = Q^2 f(r^2 Q^2) \longrightarrow \sigma_{T,L}^{\gamma^* h}(x, Q^2) = \sigma_{T,L}^{\gamma^* h}(Q^2/Q_{\text{sat}}^2(x))$$

$$\boxed{N_h(\mathbf{r}Q_{\text{sat}})}$$

⇒ With impact parameter: suppose all the *b* dependence can be scaled—out by the radius R_h : $\bar{b} = b/\sqrt{\pi R_h^2}$

$$\int d^2 b \, N_h \left(r \, Q_{\text{sat},h}(x,b) \right) \quad \longrightarrow \quad \pi R_h^2 \int d^2 \bar{b}, N_h \left(r \, Q_{\text{sat},h} \left(x, \bar{b} \right) \right)$$

If these two rescalings are exact

$$\frac{\sigma_{T,L}^{\gamma^*h}(Q^2/Q_{\rm sat,h}^2(x))}{\pi R_h^2}$$

is a universal function for any h = proton or nuclei

HP2004, Ericeira, November 2004

⇒ All lepton-proton data with $x \leq 0.01$ only function of

$$\tau_p = \frac{Q^2}{Q_{\rm sat}^2}$$

$$Q_{\rm sat}^2 = \left(\frac{x_0}{x}\right)^{\lambda} ; \ \lambda = 0.288$$

Stasto, Golec-Biernat, Kwiecinski PRL86, 596 (2001); Golec-Biernat, Wusthoff PRD59, 014017 (1999)

⇒ All lepton-proton data with $x \leq 0.01$ only function of

$$\tau_p = \frac{Q^2}{Q_{\rm sat}^2}$$

$$Q_{\rm sat}^2 = \left(\frac{x_0}{x}\right)^{\lambda} ; \ \lambda = 0.288$$

Stasto, Golec-Biernat, Kwiecinski PRL86, 596 (2001); Golec-Biernat, Wusthoff PRD59, 014017 (1999)

 $\Rightarrow \text{We fit this scaling function to}$ $\Phi(\tau) = \bar{\sigma}_0 \left[\gamma_E + \Gamma \left(0, \xi \right) + \ln \xi \right] ,$ $\xi = \frac{a}{\tau^b} ; \ a = 1.868 , \ b = 0.746$

lepton-nucleus data

HP2004, Ericeira, November 2004

Geometric scaling in lepton-nucleus data

Geometric scaling in lepton-nucleus data

Geometric scaling in lepton-nucleus data

Scaling when $\sigma^{**^{A}} \times \mathbb{R}^{2}_{P} / \mathbb{R}^{2}_{A} (mb)$ $\frac{\sigma^{\gamma^* A}(\tau)}{\pi R^2_{\Lambda}} = \frac{\sigma^{\gamma^* p}(\tau)}{\pi R^2_{n}} \,.$ 10² •C (E665) •Ca (E665) 10 We define • Pb (E665) $Q_{\text{sat,A}}^2 = Q_{\text{sat,p}}^2 \left(\frac{AR_p^2}{R_A^2}\right)^{1/\delta} \qquad \begin{array}{c} \overset{\text{o}}{\underset{\text{at}}{\text{sat,A}}} \overset{\text{o}}{\underset{\text{at}}} \overset{\text{o}}}{\underset{\text{at}}{\underset{\text{at}}}} \overset{\text{o}}}{\underset{\text{at}}} \overset{\text{o}}}{\underset{\text{at}}} \overset{\text{o}}{\underset{\text{at}}} \overset{\text{o}}}{\underset{\text{at}}} \overset{\text{o}}}{\underset{\text{at}}} \overset{\text{o}}}{\underset{\text{at}}} \overset{\text{o}}}{\underset{\text{at}}} \overset{\text{o}}}{\underset{\text{at}}} \overset{\text{o}}}{\underset{\text{at}}} \overset{\text{o}}}{\underset{\text{at}}} \overset{\text{o}}}{\underset{\text{at}}} \overset{\text{o}}} \overset{\text{o}$ *Li (NMC) *C (NMC) \square NMC $-Q^2$ □ NMC-A 1.3 $R_A = 1.12 A^{1/3} - 0.86 A^{-1/3}$ 1.2 1.1 \Rightarrow R_p , δ free parameters 0.9 $\delta = 0.79 \pm 0.02 \ R_p = 0.70 \pm 0.08 \text{fm}^{0.8}$ 0.7 $\Rightarrow Q_{\rm sat}^2 \sim A^{4/9} \ [\chi^2/{\rm dof} = 0.95]^{0.6} \stackrel{\text{End}}{_{10}^{-2}} \stackrel{\text{result}}{_{10}^{-1}} \stackrel{\text{result}}{_{10}^$ $\tau_{\rm h} = Q^2 / Q_{\rm ch}^2$ $\delta = 1 \left[Q_{\text{sat}}^2 \sim A^{1/3} \right] \Rightarrow \chi^2 / \text{dof} = 2.35$

Some consequences in AA and dAu

HP2004, Ericeira, November 2004

⇒ Factorization formula Gribov, Levin, Ryskin Phys Rep 100, 1 (1983) ...

$$\frac{dN_g^{AB}}{dyd^2p_tdb} \propto \frac{\alpha_S}{p_t^2} \int d^2k \ \phi_A(y,k^2,b) \ \phi_B\left(y,(\mathbf{k}-\mathbf{p}_t)^2,b\right) \ ,$$

where

$$\phi_h(y,k^2,b) = \int \frac{d^2r}{2\pi r^2} \exp\{i\mathbf{r}\cdot\mathbf{k}\} N_h(r^2,x;b)$$

Factorization formula Gribov, Levin, Ryskin Phys Rep 100, 1 (1983) ...

$$\frac{dN_g^{AB}}{dyd^2p_tdb} \propto \frac{\alpha_S}{p_t^2} \int d^2k \ \phi_A(y,k^2,b) \ \phi_B\left(y,(\mathbf{k}-\mathbf{p}_t)^2,b\right) \ ,$$

where

$$\phi_h(y,k^2,b) = \int \frac{d^2r}{2\pi r^2} \exp\{i\mathbf{r}\cdot\mathbf{k}\} N_h(r^2,x;b)$$

 \Rightarrow Geometric scaling: $\phi_h(y, k^2, b) = \phi(k^2/Q_{\text{sat,h}}^2)$

$$\frac{dN_g^{AA}}{dy}\bigg|_{y\sim 0} \propto Q_{\text{sat,A}}^2 \pi R_A^2 \int \frac{d\mathbf{s}}{\mathbf{s}^2} d\tau d\bar{\mathbf{b}} \ \phi(\tau^2) \ \phi\left((\tau-\mathbf{s})^2\right)$$

Factorization formula Gribov, Levin, Ryskin Phys Rep 100, 1 (1983) ...

$$\frac{dN_g^{AB}}{dyd^2p_tdb} \propto \frac{\alpha_S}{p_t^2} \int d^2k \ \phi_A(y,k^2,b) \ \phi_B\left(y,(\mathbf{k}-\mathbf{p}_t)^2,b\right) \ ,$$

where

$$\phi_h(y,k^2,b) = \int \frac{d^2r}{2\pi r^2} \exp\{i\mathbf{r}\cdot\mathbf{k}\} N_h(r^2,x;b)$$

 \Rightarrow Geometric scaling: $\phi_h(y, k^2, b) = \phi(k^2/Q_{\text{sat,h}}^2)$

$$\frac{dN_g^{AA}}{dy}\bigg|_{y\sim 0} \propto Q_{\text{sat,A}}^2 \pi R_A^2 \int \frac{d\mathbf{s}}{\mathbf{s}^2} d\tau d\bar{\mathbf{b}} \ \phi(\tau^2) \ \phi\left((\tau-\mathbf{s})^2\right)$$
$$\frac{1}{N_{\text{part}}} \frac{dN^{AA}}{d\eta}\bigg|_{\eta\sim 0} = N_0 \sqrt{s^\lambda} N_{\text{part}}^{\frac{1-\delta}{3\delta}}$$

Factorization formula Gribov, Levin, Ryskin Phys Rep 100, 1 (1983) ...

$$\frac{dN_g^{AB}}{dyd^2p_tdb} \propto \frac{\alpha_S}{p_t^2} \int d^2k \ \phi_A(y,k^2,b) \ \phi_B\left(y,(\mathbf{k}-\mathbf{p}_t)^2,b\right) \ ,$$

where

$$\phi_h(y,k^2,b) = \int \frac{d^2r}{2\pi r^2} \exp\{i\mathbf{r}\cdot\mathbf{k}\} N_h(r^2,x;b)$$

 \Rightarrow Geometric scaling: $\phi_h(y, k^2, b) = \phi(k^2/Q_{\text{sat,h}}^2)$

$$\frac{dN_g^{AA}}{dy}\Big|_{y\sim 0} \propto Q_{\text{sat,A}}^2 \pi R_A^2 \int \frac{d\mathbf{s}}{\mathbf{s}^2} d\tau d\bar{\mathbf{b}} \ \phi(\tau^2) \ \phi\left((\tau-\mathbf{s})^2\right)$$
$$\frac{1}{N_{\text{part}}} \frac{dN^{AA}}{d\eta}\Big|_{\eta\sim 0} = N_0 \sqrt{s^\lambda} N_{\text{part}}^{\frac{1-\delta}{3\delta}}$$

 \Rightarrow But factorization not really needed, only geometric scaling.

HP2004, Ericeira, November 2004

Multiplicities and geometric scaling

High- p_t at forward rapidities

 \Rightarrow Forward rapidities \longrightarrow testing ground for saturation.

- \Rightarrow To check geometric scaling
 - Use the factorization formula

$$\frac{dN_g^{AB}}{dyd^2p_tdb} \propto \frac{\alpha_S}{p_t^2} \int d^2k \ \phi_A(y,k^2,b) \ \phi_B\left(y,(\mathbf{k}-\mathbf{p}_t)^2,b\right) \ ,$$

Suppose $\phi_A(k = Q/2) \simeq \Phi(\tau_A); \ \tau_A = k^2/4\bar{Q}_{\mathrm{sat,A}}^2; \ \bar{Q}_{\mathrm{sat,A}}^2 = \frac{N_c}{C_F}\bar{Q}_{\mathrm{sat,A}}^2$

$$\checkmark$$
 Taking $\phi_d \sim 1/k_t^n$, $n \gg 1$

$$\frac{\frac{dN_{c_1}^{\mathrm{dAu}}}{N_{\mathrm{coll}_1}d\eta d^2 p_t}}{\frac{dN_{c_2}^{\mathrm{dAu}}}{N_{\mathrm{coll}_2}d\eta d^2 p_t}} \approx \frac{N_{\mathrm{coll}_2}\phi_A(p_t/Q_{\mathrm{s,c_1}})}{N_{\mathrm{coll}_1}\phi_A(p_t/Q_{\mathrm{s,c_2}})} \approx \frac{N_{\mathrm{coll}_2}\Phi(\tau_{c_1})}{N_{\mathrm{coll}_1}\Phi(\tau_{c_2})}$$

where c1, c_2 are two centrality classes.

 \Rightarrow I.e. we make ratios of the DIS scaling function at the appropriate τ .

Geometric scaling and dAu data

 $\Rightarrow \mathsf{RHIC} \text{ has measured } p_t \text{ spectra of } \overset{\mathfrak{F}}{\overset{\mathfrak{P}}{\simeq}} \\ \text{particles produced at forward} \\ \text{rapidities (very small-x)} \end{aligned}$

 $x \sim \frac{\exp\{-y\}}{\sqrt{s}}$

Strong suppression found (predicted from small-x evolution) data: BRAHMS, nucl-ex/0403005

⇒ RHIC has measured p_t spectra of particles produced at forward rapidities (very small-x)

$$x \sim \frac{\exp\{-y\}}{\sqrt{s}}$$

Strong suppression found (predicted from small-x evolution) data: BRAHMS, nucl-ex/0403005

Comparison with the scaling curve found from lepton-hadron data gives reasonable agreement.

$$N_{\text{coll}} = 13.6 \pm 0.3, \ 7.9 \pm 0.4, \ 3.3 \pm 0.4$$

 $\checkmark Q^2_{
m sat.c} \propto N_{
m coll}^{1/\delta}$

Freund, Rummukainen, Weigert and Schafer PRL 90, 222002 (2003) studied IA data in a similar analysis.

- \Rightarrow Different conclusion: $Q_{\text{sat,A}}^2$ grows <u>slower</u> than $A^{1/3}$
- \Rightarrow Differences (main)
 - \checkmark Kinematics: $x \le 0.1$
 - Seometry $R_A \sim A^{1/3}$
 - **Normalization** F_2^A/AA^ϵ , $\epsilon \simeq 0.1$

Freund, Rummukainen, Weigert and Schafer PRL 90, 222002 (2003) studied IA data in a similar analysis.

- \Rightarrow Different conclusion: $Q_{\text{sat,A}}^2$ grows <u>slower</u> than $A^{1/3}$
- \Rightarrow Differences (main)
 - \checkmark Kinematics: $x \le 0.1$
 - Seometry $R_A \sim A^{1/3}$
 - \checkmark Normalization F_2^A/AA^ϵ , $\epsilon \simeq 0.1$

 $Q_{\text{sat,A}}^2 \sim A^{1/3} \log A$ is sometimes taken Kharzeev, Levin, Nardi, ... \Rightarrow We have been unable to fit lepton-A data with the log term.

Relation to solutions of BK

Behavior of the saturation scale

See talk by G. Milhano

- \Rightarrow Energy dependence:
- \checkmark fixed $\alpha_S \longrightarrow Q_{\text{sat}}^2 \sim x^{-d \alpha_s}$
- \checkmark running $\alpha_S \longrightarrow Q_{\text{sat}}^2 \sim \exp\left[\Delta' \sqrt{X \log x}\right]$

⇒ A–dependence

- ⇒ fixed $\alpha_S \longrightarrow$ same as initial conditions.
- \checkmark running $\alpha_S \longrightarrow A$ -dependence decreases with x.

Relation to solutions of BK

Behavior of the saturation scale

See talk by G. Milhano

- \Rightarrow Energy dependence:
- \checkmark fixed $\alpha_S \longrightarrow Q_{\text{sat}}^2 \sim x^{-d \alpha_s}$
- \checkmark running $\alpha_S \longrightarrow Q_{\text{sat}}^2 \sim \exp\left[\Delta'\sqrt{X \log x}\right]$

⇒ A–dependence

- ⇒ fixed $\alpha_S \longrightarrow$ same as initial conditions. ???
- \checkmark running $\alpha_S \longrightarrow A$ -dependence decreases with x.

Relation to solutions of BK

Behavior of the saturation scale

See talk by G. Milhano

- \Rightarrow Energy dependence:
- \checkmark fixed $\alpha_S \longrightarrow Q_{\text{sat}}^2 \sim x^{-d \alpha_s}$
- \checkmark running $\alpha_S \longrightarrow Q_{\text{sat}}^2 \sim \exp\left[\Delta'\sqrt{X \log x}\right]$

⇒ A–dependence

- ⇒ fixed $\alpha_S \longrightarrow$ same as initial conditions. ???
- \checkmark running $\alpha_S \longrightarrow A$ -dependence decreases with x.
- \Rightarrow b-dependence of the saturation scale using BK??

Conclusions

- Two scales: dipole and hadron size. Once they are scaled by Q_{sat} and R_h one obtains a universal curve. \longrightarrow Geometric scaling.
- The geometric scaling found in Ip data has been extended to the nuclear case
 - $\stackrel{\bullet}{>} Q^2_{\text{sat,A}}$ grows faster than $A^{1/3}$.
- \Rightarrow This growth can explain the increase of multiplicities with N_{part} in AA at central rapidities.
- Suppression of particle production at forward rapidities also agree with the scaling law.
- These facts are in qualitative agreement with saturation approaches — numerical coincidence??
 - Motivation for a more quantitative study (BK evolution...)