The Potential Episode of the Heavy Quark Story

Ågnes Mócsy Frankfurt University & Institute of Advanced Studies

with Péter Petreczky

Hard Probes 2004, Ericeira, Portugal November 4 - 10, 2004

Why

Deconfinement T_c - heavy q bound states could exist above 1986: screening prevents cc binding above T_c Matsui,Satz 1988: sequential dissolution Karsch, Mehr, Satz

2001: J/ψ disappears at $1.1T_c$ Digal, Petreczky, Satz however

2004: charmonia J/ψ , η_c survive ~ $1.5T_c$ χ_c^0 , χ_c^1 dissolve ~ $1.1T_c$ Umeda; Asakawa, Hatsuda Datta, Karsch, Petreczky, Wetzorke

bottomonia see talk by K. Petrov

moreover

 J/ψ , η_c properties - mass, amplitude - do not change A. Mocsy A New Puzzle Hard Probes 2004

hence

We study the (non) dissolution å (non)changes in the properties of $c\overline{c}$ & bb states via their correlators & spectral functions in a potential model with different screened potentials.

A. Mocsy

Potential model

Cornell pot. $V(r) = -\frac{a}{r} + \sigma r$ Success @ T=0 @ T \ne 0 Screened pot. $V(r,T) = -\frac{a}{r}e^{-\mu(T)r} + \frac{\sigma}{\mu(T)}\left(1 - e^{-\mu(T)r}\right)$ Karsch, Mehr, Satz '88 1.5T screening mass $\mu(T) = 0.24 + 0.31 \left(\frac{T}{T_c} - 1\right) \text{GeV}$ 2 $V(r,T) / \sigma^{1/2}$ AM, Petreczky, in prep. Asymptotic value V₁(T) 0

6

thermal energy for q-q pair Digal, Petreczky, Satz '01 Hard Probes 2004

A. Mocsy

-1

2

 $\mathbf{r} \, \boldsymbol{\sigma}^{1/2}$

$$m_{\text{pole}}(T) = m_{c,b} + \frac{V_{\infty}(T)}{2}$$

Decrease of m_{pole} independent of details of the potential.

Qualitative agreement w/ lattice in quasiparticle picture. Petreczky et al '01

+ solve Schroedinger eq.

 $\begin{array}{c}
1.8 \\
1.7 \\
1.7 \\
1.6 \\
1.6 \\
1.4 \\
1.3 \\
1.2 \\
1.0 \\
1.5 \\
2.0 \\
T/T_{c}
\end{array}$

AM, Petreczky, in prep.

binding energy

$$M_{i} = 2m_{c,b} + E_{i}$$

 s_{n} (T)= $2m_{pole}$

A. Mocsy

 $\downarrow \\ \textbf{radial wave fct. in origin} \\ F_i^2 \propto \frac{|R_i(0)|^2}{|R_i'(0)|^2} S \\ |R_i'(0)|^2 P \\ \text{Hard Probes 2004} \end{cases}$

What do we get

A. Mocsy

Hard Probes 2004

Charmonium 1S pseudoscalar

Extra feature:

Important contribution from continuum due to threshold reduction.

Not detected on lattice.

Hard Probes 2004

A. Mocsy

Including also 2S in T=0 pseudoscalar correlator

25 % drop in the pseudoscalar correlator due to melting of the 25 state Not detected on lattice.

A. Mocsy

also

Bottomonium 1S and 1P

Qualitatively similar behavior

A. Mocsy

meanwhile

the radii

 $b\bar{b}$ states hang in there longer than $c\bar{c}$

A. Mocsy

furthermore

see talk by Kaczmarek

Where are we?

First analysis of quarkonia correlators in potential models

Qualitative, but no quantitative agreement w/ lattice

We found extra features - lattice doesn't see. Threshold decrease Importance of continuum on correlators.

Quarkonia masses - as on lattice

Tested w/ different potentials - robust results !

A. Mocsy

... where to now?

Analyze the excited bottomonia states 25, 35, 2P

Extra effects *transport* for J/ ψ Understanding why it's different than η_c

Include thermal width due to gluon dissociation

To be continued ...

Hard Probes 2004

A. Mocsy