Static quark anti-quark free energy in full QCD

Olaf Kaczmarek¹, Frithjof Karsch¹, Felix Zantow²

¹Fakultät für Physik, Universität Bielefeld ²Physics Department, Brookhaven National Laboratory

Static quark anti-quark free energy in full QCD

1) Introduction

Details of the calculations

2) Renormalized free energies

Short vs. large distance behaviour Running coupling and screening

4) Connection to entropy and energy

F(r,T) = E(r,T) - TS(r,T)

- 5) The renormalized Polyakov loop
- 6) Conclusions & outlook

N-point correlation functions (*qqq*) Heavy quark free energies at finite density

Details of the calculation

 $N_f = 2$ with m/T = 0.4 ($m_\pi/m_\rho \approx 0.7$ at T_c)

Lattice size: $16^3 \times 4$, $T_c \approx 170 \text{MeV}$

(generated by the Bielefeld-Swansea collaboration)

Symanzik improved gauge action and p4-improved staggered fermion action

Physical scale is determined by string tension

T=0 potential obtained from Wilson loops

[F. Karsch, E. Laermann and A. Peikert, Nucl. Phys . B 605 (2001) 579] Coulomb gauge fixing [O. Philipsen, Phys. Lett. B535 (2002) 138]

$$-\ln\left(\langle \tilde{\mathrm{Tr}}L(\mathbf{x})\tilde{\mathrm{Tr}}L^{\dagger}(\mathbf{y})\rangle\right) = \frac{F_{\bar{q}q}(r,T)}{T}$$
$$-\ln\left(\langle \tilde{\mathrm{Tr}}L(\mathbf{x})L^{\dagger}(\mathbf{y})\rangle\right)\Big|_{GF} = \frac{F_{1}(r,T)}{T}$$
$$-\ln\left(\frac{9}{8}\langle \tilde{\mathrm{Tr}}L(\mathbf{x})\tilde{\mathrm{Tr}}L^{\dagger}(\mathbf{y})\rangle - \frac{1}{8}\langle \tilde{\mathrm{Tr}}L(\mathbf{x})L^{\dagger}(\mathbf{y})\rangle\Big|_{GF}\right) = \frac{F_{8}(r,T)}{T}$$

Renormalization of F(r,T)by matching with T=0 potential $e^{-F_1(r,T)/T} = (Z_r(g^2))^{2N_{\tau}} \langle \operatorname{Tr} (L_x L_y^{\dagger}) \rangle$

Renormalization of F(r,T)by matching with T=0 potential

$$e^{-F_1(r,T)/T} = \left(Z_r(g^2)\right)^{2N_{\tau}} \langle \operatorname{Tr} (L_x L_y^{\dagger}) \rangle$$

String breaking $T < T_c$ $F(r\sqrt{\sigma} \gg 1, T) < \infty$

high-T physics $rT \gg 1$; screening $\mu(T) \sim g(T)T$ $F(\infty, T) \sim -T$

T-independent $r \ll 1/\sqrt{\sigma}$ $F(r,T) \sim g^2(r)/r$ Complex *r* and *T* dependence Small vs. large distance behavior Running coupling vs. screening

Running coupling vs. Screening

Effective running coupling:

$$\alpha_{qq}(r,T) = \frac{3r^2}{4} \frac{\mathrm{d}F_1(r,T)}{\mathrm{d}r}$$

 \longrightarrow Talk by Felix Zantow

Screening dominates at large r

Large lattices needed to extract screening properties

Suitable Ansatz to describe the data

 \longrightarrow Talk by Sanatan Digal

Energy and entropy contributions

F(r,T) = E(r,T) - TS(r,T)

String breaking

$$T < T_c$$

 $F(r\sqrt{\sigma} \gg 1, T) < \infty$

high-T physics

$$rT \gg 1$$
; screening
 $\mu(T) \sim g(T)T$
 $F(\infty,T) \sim -T$

T-independent $r \ll 1/\sqrt{\sigma}$ $F(r,T) \sim g^2(r)/r$

Energy and entropy contributions

$$F(r,T) = E(r,T) - TS(r,T)$$

String breaking

$$T < T_c$$

 $F(r\sqrt{\sigma} \gg 1, T) < \infty$

high-T physics $rT \gg 1$; screening $\mu(T) \sim g(T)T$ $F(\infty,T) \sim -T$ (entropy dominated)

T-independent $r \ll 1/\sqrt{\sigma}$ $F(r,T) \sim g^2(r)/r$ (energy dominated)

Energy and entropy contributions

$$F(r,T) = E(r,T) - TS(r,T)$$

String breaking

$$T < T_c$$

 $F(r\sqrt{\sigma} \gg 1, T) < \infty$

high-T physics $rT \gg 1$; screening $\mu(T) \sim g(T)T$ $F(\infty,T) \sim -T$ (entropy dominated)

T-independent $r \ll 1/\sqrt{\sigma}$ $F(r,T) \sim g^2(r)/r$ (energy dominated)

Entropy contributions play a role at fi nite T Separation of energy/entropy contributions F(r,T) = E(r,T) - TS(r,T)

Energy contributions for $r \rightarrow \infty$

Energy contributions at infinite quark separation

$$E(r = \infty, T) = -T^2 \frac{\partial F(r = \infty, T)/T}{\partial T}$$

Finite *string breaking energy* below T_c Peak in the energy near T_c

Seperating free and internal energy

Seperation of free energy and internal energy

$$E_1(r,T) = -T^2 \frac{\partial F_1(r,T)/T}{\partial T}$$

Screening of $E_1(r,T)$

Enhancement of internal energy compared to free energy

$$L_{ren} = \exp\left(-\frac{F(r=\infty,T)}{2T}\right)$$
Defined by long distance behaviour of $F(r,T)$.

Quenched QCD:

 $L_{ren} = 0$ for $T < T_c$.

Finite gap at T_c

Full QCD:

 L_{ren} finite for all T.

Strong increase near T_c .

Conclusions

Renormalized free energies Zero-*T* behaviour at small *r* Complex *r* and *T* dependence

Short vs. long distance behaviour *T*-independent at small *r*, running coupling g(r)Screening properties at large *r*, running coupling g(T)

Free energies, internal energy and entropy Entropy contributions play a role at finite *T* Potential energy larger than free energy

Renormalized Polyakov loop Defined by long distance properties of *F* Well behaved in the continuum limit

Outlook

Short distance behaviour

More detailed analysis of g(r) and zero-*T* behaviour Smaller lattice spacings needed

Long distance behaviour

Extraction of screening properties and masses Larger lattices needed, $rT \gg 1$

N-point correlation functions Check of renormalization procedure 3-quark free energies

3-quark free energies [K. Hübner, O. Vogt, O.K.]

$$\exp\left(-F_{qqq}^{8'}/T\right) = \frac{1}{24} \langle 27 \operatorname{Tr} L_1 \operatorname{Tr} L_2 \operatorname{Tr} L_3 + 9 \operatorname{Tr} L_3 \operatorname{Tr} (L_1 L_2) \\ -9 \operatorname{Tr} L_1 \operatorname{Tr} (L_2 L_3) - 3 \operatorname{Tr} (L_1 L_2 L_3) \rangle$$

$$\exp\left(-F_{qqq}^{10}/T\right) = \frac{1}{60} \langle 27 \operatorname{Tr} L_1 \operatorname{Tr} L_2 \operatorname{Tr} L_3 + 9 \operatorname{Tr} L_1 \operatorname{Tr} (L_2 L_3) \\ + 9 \operatorname{Tr} L_2 \operatorname{Tr} (L_1 L_3) + 9 \operatorname{Tr} L_3 \operatorname{Tr} (L_1 L_2) \\ + 3 \operatorname{Tr} (L_1 L_2 L_3) + 3 \operatorname{Tr} (L_1 L_3 L_2) \rangle$$

3-quark free energies [K. Hübner, O. Vogt, O.K.]

Renormalization of 3-quark Polyakov loop correlation functions

$$F_{qqq}(r,T) = \left(Z_R(g^2)\right)^{3N_{\tau}} \left\langle f\left(L_x, L_y, L_z\right) \right\rangle$$

Comparison with $q \bar{q}$ free energies

$$F_{qqq}(r) = \sum_{\langle qq \rangle} F_{qq}(r) = \frac{3}{2} F_{q-q}(r)$$

Renormalization of n-point functions with the same $Z_R(g^2)$

Static quark anti-quark free energy in full QCD

3-quark free energies [K. Hübner, O. Vogt, O.K.]

Renormalization of 3-quark Polyakov loop correlation functions

$$F_{qqq}(r,T) = \left(Z_R(g^2)\right)^{3N_{\tau}} \left\langle f(L_x, L_y, L_z) \right\rangle$$

Comparison with $q \bar{q}$ free energies

$$F_{qqq}(r) = \sum_{\langle qq \rangle} F_{qq}(r) = \frac{3}{2} F_{q-q}(r)$$

Renormalization of n-point functions with the same $Z_R(g^2)$

Static quark anti-quark free energy in full QCD

Outlook

Short distance behaviour

More detailed analysis of g(r) and zero-*T* behaviour Smaller lattice spacings needed

Long distance behaviour

Extraction of screening properties and masses Larger lattices needed, $rT \gg 1$

N-point correlation functions Check of renormalization procedure 3-quark free energies

Extension to finite density

Taylor expansion of correlation functions/free energies

Heavy quark free energies at finite density [M. Döring, S. Ejiri, O.K.]

Taylor expansion of the correlation functions in μ

$$F_{1}(r,T,\mu)/T = C_{0}(r) + C_{2}(r)\mu^{2} + C_{4}(r)\mu^{4}$$

$$C_{0}(r) = -\log\langle \operatorname{Tr} (L_{x}L_{y}^{\dagger})\rangle_{0} = F_{1}(r,T)/T$$

Enhancement of m/T with increasing μ

perturbation theory:
$$\left(\frac{m}{T}\right)^2 = \left(\left(\frac{N_c}{3} + \frac{N_f}{6}\right) + \frac{N_f}{2\pi^2}\left(\frac{\mu}{T}\right)^2\right)g^2$$

Outlook

Short distance behaviour

More detailed analysis of g(r) and zero-*T* behaviour Smaller lattice spacings needed

Long distance behaviour

Extraction of screening properties and masses Larger lattices needed, $rT \gg 1$

N-point correlation functions Check of renormalization procedure 3-quark free energies

Extension to finite density

Taylor expansion of correlation functions/free energies

Application in potential models

Charmonium wave functions and suppression pattern

Details of the calculation and *T***=0 Potential**

Details of the calculation and *T***=0 Potential**

Behaviour in the different color channels

 F_1 is *T*-independent at small distances and coincide with *T*=0-potential

 F_1 is attractive and F_8 repulsive at short separation

String breaking in all colour channels

Free energies coincide at large distance

Screening function

$$S_1(r,T) = -\frac{3}{4}r(F_1(r,T) - F_1(\infty,T))$$

solid lines are fits to

$$\frac{1}{2b_0 \log\left(\frac{1}{r\Lambda_{QCD}} + c\frac{T}{\Lambda_{QCD}}\right)} e^{-mr}$$

Screening function

$$S_1(r,T) = -\frac{3}{4}r(F_1(r,T) - F_1(\infty,T))$$

 $rT \lesssim 0.5$: dominated by $g^2(r)$ logarithmic decreasing

Screening function

$$S_1(r,T) = -\frac{3}{4}r(F_1(r,T) - F_1(\infty,T))$$

 $rT \lesssim 0.5$: dominated by $g^2(r)$ logarithmic decreasing

 $rT \gtrsim 0.5$: screening sets in $g^2(r,T)e^{-mr}$

Screening function

$$S_1(r,T) = -\frac{3}{4}r(F_1(r,T) - F_1(\infty,T))$$

 $rT \lesssim 0.5$: dominated by $g^2(r)$ logarithmic decreasing

 $rT \gtrsim 0.5$: screening sets in $g^2(r,T)e^{-mr}$

 $rT \gtrsim 1.0$: dominated by screening $g^2(T)e^{-mr}$

Quenched vs. Full QCD

High temperatures and large distances

Screening properties comparable [PT: $\left(\frac{m}{T}\right)^2 = \left(\frac{N_c}{3} + \frac{N_f}{6}\right)g^2$]