Jets and Data

Resummations and Interjet Radiation

George Sterman: For Hard Probes 2004, in absentia

- pQCD of hard processes
- Inclusive jets $(A \leq 1)$
- Jet particle flow
- Jet energy flow: the jet shape, event shapes
- Perturbative resummations
- Interjet radiation
- Nonperturbative corrections in Event Shapes & 1PI cross sections

*** pQCD of Hard Processes**

• Infrared safety & asymptotic freedom:

$$Q^{2} \hat{\sigma}_{SD}(Q^{2}, \mu^{2}, \alpha_{s}(\mu)) = \sum_{n} c_{n}(Q^{2}/\mu^{2}) \alpha_{s}^{n}(\mu) + \mathcal{O}\left(\frac{1}{Q^{p}}\right)$$
$$= \sum_{n} c_{n}(1) \alpha_{s}^{n}(Q) + \mathcal{O}\left(\frac{1}{Q^{p}}\right)$$

- PT improves as Q increases
- e^+e^- total; jets
- Basic requirement: group together states that differ by soft emissions/collinear rearragnements

• Generalization: to IS hadron(s): factorization

 $Q^2 \sigma_{\text{phys}}(Q,m) = \omega_{\text{SD}}(Q/\mu, \alpha_s(\mu)) \otimes f_{\text{LD}}(\mu, m) + \mathcal{O}(1/Q^p)$

- $\mu = factorization scale; m = IR scale (m may be perturbative)$
 - New physics in $\omega_{\rm SD}$; $f_{\rm LD}$ "universal"
 - Deep-inelastic (p=2), $p\bar{p} \rightarrow Q\bar{Q} \dots$
 - Exclusive decays: $B \rightarrow \pi \pi$
 - Exclusive limits: $e^+e^- \rightarrow JJ$ as $m_J \rightarrow 0$

• Whenever there is factorization, there is evolution

$$0 = \mu \frac{d}{d\mu} \ln \sigma_{\text{phys}}(Q, m)$$
$$\mu \frac{d\ln f}{d\mu} = -P(\alpha_s(\mu)) = -\mu \frac{d\ln \omega}{d\mu}$$

• Wherever there is evolution there is resummation

$$\sigma_{\rm phys}(Q,m) = \omega(1,\alpha_s(Q)) f(q,m) \exp\left\{\int_q^Q \frac{d\mu'}{\mu'} P\left(\alpha_s(\mu')\right)\right\}$$

• Coherent branchings: "mini-factorizations"

*** Inclusive Jets**

• Factorized Cross Sections (e.g. $A + B \rightarrow J(p_J) + X$)

$$p_J^4 \frac{d\sigma_{\rm phys}(p_J, m)}{dp_J^2} = f_{\rm LD,A}(\mu, m) \otimes \omega_{\rm SD}\left(\frac{p_J^2}{\hat{s}}, \frac{\hat{s}}{\mu^2}, \alpha_s(p_J)\right) \otimes f_{\rm LD,B}(\mu, m)$$

- But what's a jet? \leftrightarrow define "X" and calculate ω
- Need to construct jets from final states: algorithms G. Blazey et al., *Run II Jet Physics* hep-ph/0005012

- Cones algorithms: towers \rightarrow protojets \rightarrow jets
 - * Calorimeter tower mta. (directions y_i, ϕ_i)
 - * Cluster within cones

$$i \subset C$$
 : $\sqrt{(y^i - y^C)^2 + (\phi^i - \phi^C)^2} \le R.$

- * Task I: to identify "centers" y_C , ϕ_C (high- p_T towers as "seeds" (but IR safety problematic)) * Result: "protojets"
- Task II: interpret overlapping protojets: "merge/split"
- Naive interpretation is to find jets that "really" come from a single parton, but this is not a well-defined concept.
- For single jet inclusive, a cleaner method would be to scan all possible protojets, identify largest p_T

 The problem with some iterative algorithms (seeds and merge/split) sensitivity to soft emissions: lose infrared safety at NNLO

- mid-point soft emission changes merging procedure discontinuously
- Corrected in modified Tevatron Run II algorithms:
 by testing more cones ("scans enough")

- The k_T algorithm: preclusters \rightarrow jets
- Starts with measurements in calorimeter "towers" p_i
- "For each precluster i in the list, define

$$d_i = p_{T,i}^2$$

– For each pair (i, j) of preclusters $(i \neq j)$, define

$$d_{ij} = \min\left(p_{T,i}^2, p_{T,j}^2\right) \frac{(y_i - y_j)^2 + (\phi_i - \phi_j)^2}{D^2} ,$$

- Find d_{\min} among all d_i , d_{ij}
- if d_{\min} is a d_i : identify as "jet"
- if d_{\min} is a d_{ij} : combine into new precluster $p_{ij} = p_i + p_j$
- Repeat (leaving out "jets")
- End result: list of "jets" (most with small d_i)

- What do we learn so far?
 - Extraordinary tracking of predicted shape to highest energies
 - Energy uncertainty remains large but will decrease with more statistics
 - Poorly-understood excess towards lower p_T
 - CDF k_T algorithm shows excess at largest p_T
 - But algorithms may evolve
 - Remaining discrepancies probably due to still incomplete understanding of particle and energy flow

*** Jet Particle Flow**

- Low-z spectrum at Zeus; from Khoze/Ochs hep-ph/0110295

$$\xi = \ln\left(\frac{E_J}{E_{\text{particle}}}\right)$$

Angular ordering at branching \rightarrow suppression at large ξ ; Gaussian-like shape

- Large-z fragmentation function fit; from Kretzer hep-ph/0003177

$$\frac{d\sigma_{P=T,L}^{h}}{dz} = \sum_{i=q,\bar{q},g} \int_{z}^{1} \frac{d\zeta}{\zeta} C_{P}^{i}\left(\zeta,Q^{2},\mu_{F,R}^{2}\right) D_{i}^{h}\left(\frac{z}{\zeta},\mu_{F}^{2}\right)$$

*** Jet Energy Flow**

• The "Jet Shape"

• Jets in more detail: Event Shapes

• Flexible event shapes (C.F. Berger, Kúcs, GS (2003), Berger, Magnea (2004))

$$\tau_a = \frac{1}{Q} \sum_{i \text{ in } N} E_i \left(\sin \theta_i \right)^a \left(1 - \left| \cos \theta_i \right| \right)^{1-a}$$

- θ_i angle to thrust (a = 0) axis
- broadening: a = 1; inclusive limit $a \to \infty$
- collectively: "angularities"
- Example: Heavy jet distribution at the Z pole ($\sim \tau_0$) (Korchemsky and Tafat (2000))

- * Dashed line: NLL resummed; solid line: NP "shape function" fit
- Jet shapes in DIS similar <u>if</u> overall final state limited (global)
 Dasgupta and Salam (2000, 2002)
- Semi-numerical resummation (flexibility)
 & new hadron-hadron event shapes
 Banfi, Salam, Zanderighi (2002,2004)

*** Perturbative resummations: Why? When? How?**

Every final state in hard scattering carries the imprint of QCD dynamics on all distance scales

- Logarithmic corrections
- Structure of IR/CO singularities
- Window to power corrections
- Exploration of gauge theory

Explicit Logs: Event shapes, p_T distributions

$$\frac{d\sigma(Q)}{dQ_1} \propto \frac{1}{Q_1} \sum_n C_n \alpha_s^n \ln^{an+b} \left(\frac{Q}{Q_1}\right) \quad \Lambda \ll Q_1 \ll Q$$

Event shapes: $Q_1 = e_a Q$

(from Kulesza, G.S., Vogelsang (2002))

- maximum then decrease near "exclusive" limit (parton model kinematics) replaces divergence
- soft but perturbative radiation broadens distribution
- typically NP correction necessary for quantitative description of data
- recover fixed order away from exclusive limit

Implicit logs: threshold resummations, 1PI high- p_T

$$\sigma(Q) \propto \int \frac{dQ_1}{Q_1} F(Q_1) \sum_n C_n \alpha_s^n \ln^{an+b} \left(\frac{Q}{Q_1}\right) F(0) = 0$$

(from Catani, de Florian, Grazzini, Nason (2003))

Modest change, scale improvement ↔ increased confidence

*** When Can We Resum?**

*** Factorization Structure and Proofs**

- (1) $\omega_{\rm SD}$ incoherent with LD dynamics
- (2) mutual incoherence when $v_{\rm rel} = c$
- For large $Q \sim s$: long-distance logs from

$$\frac{d\sigma(Q, a+b \to N_{\text{jets}})}{dQ} = \int dx_a dx_b \ H(x_a p_a, x_b p_b, Q)_{a'b' \to c_1 \dots c_{N_{\text{jets}}}} \\ \times \mathcal{P}_{a'/a}(x_a p, X_a) \ \mathcal{P}_{b'/b}(x_b p, X_b) \\ \otimes_{\text{soft}} \prod_{i=1}^{N_{\text{jets}}} \ J_{c_i}(X_i) \ \otimes_{\text{soft}} S_{a'b' \to c_1 \dots c_{N_{\text{jets}}}}(X_{\text{soft}})$$

$$\frac{d\sigma(Q, a+b \to N_{\text{jets}})}{dQ} = H \times \prod_{c} \mathcal{P}_{c} \otimes_{\text{soft}} \prod_{i} J_{i} \otimes_{\text{soft}} S$$

- A story with only these pieces:
 - * Evolved incoming partons $\mathcal{P}_{a'/a}$, $\mathcal{P}_{b'/b}$ collide at H;
 - $* X_{a,b}$ "fragments" to produce
 - * Outgoing jets J_{c_i} and coherent soft emission S.
 - * Holds to any fixed α_s^n , all $\ln^a \mu/Q$ to $\sim E_{\rm soft}/E_{\rm jet}$.
- W, Z, H in pp: $H \times \mathcal{P}_a \otimes_{\text{soft}} \mathcal{P}_b \otimes_{\text{soft}} S$
- $e^+e^- \rightarrow 2J$: $H \times J_q J_{\bar{q}} \otimes_{\text{soft}} S$
- DIS F_i near x = 1: $H \times \mathcal{P}_a \otimes_{\text{soft}} J_q \otimes_{\text{soft}} S$

- \star Application: "angularities" e^+e^-
- NLL resummed cross section

$$\sigma(\tau_a, Q, a) = \sigma_{\text{tot}} \int_C d\nu \, \mathrm{e}^{\nu \tau_a} \left[J_i(\nu, p_{J_i}) \right]^2$$

- At NLL can define $S_{c\bar{c}} = 1$: independent jet evolution (Catani, Turnock, Trentadue, Webber (1990-92)) - The jet in transform space

$$J_{i}(\nu, p_{J_{i}}) = \int_{0}^{1} d\tau_{a} e^{-\nu \tau_{J_{i}}} J_{i}(\tau_{J_{i}}, p_{J_{i}}) = e^{\frac{1}{2}E(\nu, Q, a)}$$

$$E(\nu, Q, a) = 2 \int_{0}^{1} \frac{du}{u} \left[\int_{u^{2}Q^{2}}^{uQ^{2}} \frac{dp_{T}^{2}}{p_{T}^{2}} A(\alpha_{s}(p_{T})) \left(e^{-u^{1-a}\nu(p_{T}/Q)^{a}} - 1 \right) + \frac{1}{2} B\left(\alpha_{s}(\sqrt{u}Q) \right) \left(e^{-u(\nu/2)^{2/(2-a)}} - 1 \right) \right]$$

Enter: nonperturbative scales in resummed PT Can be avoided to NLL accuracy (Catani et al. 1996)

***** Interjet Radiation

• Non-global logs: color and energy flow (Dasgupta & Salam (2001))

– Simplest cases: 2 jets. Measure distribution $\Sigma_{\Omega}(E)$

- Choices for Cross Section:
- a) Inclusive in $\overline{\Omega} \rightarrow \text{Number of jets not fixed}!$
- b) Correlation with event shape τ_a . . . : fixes number of jets \rightarrow factorization (C.F. Berger, Kúcs, GS (2003), Dokshitzer, Marchesini (2003))

- for a): Number of jets not fixed: nonlinear evolution (Banfi, Marchesini, Smye (2002)) LL in E/Q, large- N_c (all $\Sigma = \Sigma(E)$)

$$\partial_{\Delta} \Sigma_{ab} = -\partial_{\Delta} R_{ab} \Sigma_{ab} + \int_{k \text{ not in } \Omega} \frac{dN_{ab \to k}}{(\Sigma_{ak} \Sigma_{kb} - \Sigma_{ab})}$$

$$dN_{ab\to k} = \frac{d\Omega_k}{4\pi} \frac{\beta_a \cdot \beta_b}{\beta_k \cdot \beta_b \beta_k \cdot \beta_a} \qquad R_{ab} = \int_E^Q \frac{dE'}{E'} \int_\Omega dN_{ab\to k}$$

- Origin of the nonlinearity
 - $* \ \partial_{\Delta} = E \partial_E$
 - $* \partial_E$ requires a "hard" gluon k
 - * New hard gluon acts as new, recoil-less source
 - * Large-N limit: $\bar{q}(a)G(k)q(b)$ sources $\rightarrow \bar{q}(a)q(k) \oplus \bar{q}(k)q(a)$

 Intriguing relation with approach to small-x saturation (Balitsky (1995), Kovchegov (1998), Weigert (2003))

- For b) Correlation with event shape τ_a . . . : fixes number of jets
 - Keep $\tau_a Q \sim E_\Omega$ (BKS), Resum as above:

$$\frac{d\sigma}{dE_{\Omega}d\tau_a} \sim S(E_{\Omega}/\tau_a Q) \; \frac{d\sigma_{\rm resum}}{d\tau_a}$$

- Limit $E_{\Omega}/\tau_a Q \rightarrow 0$ (DM): use nonlinear evolution for S
- Influence of color flow on energy flow at wide angles (Dokshitzer, Khoze, Troyan, Mueller . . .)
- Applications to rapidity gaps
 (Oderda, GS (1999) ; Appleby, Seymour (2003))

• Interjet multiplicity studies at CDF: slow increase with jet energy

- Energy flow studies will be interesting
- Radiation from hard scattering vs. spectator interactions

***** NP corrections in Event Shapes & 1PI cross sections

- From Resummed PT to NP QCD
- How to interpret expressions like

$$E(\nu, Q, a) = 2 \int_{0}^{1} \frac{du}{u} \left[\int_{u^{2}Q^{2}}^{uQ^{2}} \frac{dp_{T}^{2}}{p_{T}^{2}} A\left(\alpha_{s}(p_{T})\right) \left(e^{-u^{1-a}\nu(p_{T}/Q)^{a}} - 1\right) + \frac{1}{2} B\left(\alpha_{s}(\sqrt{u}Q)\right) \left(e^{-u(\nu/2)^{2/(2-a)}} - 1\right) \right]$$

• Argument of α_s vanishes but expansion in $\alpha_s(Q)$ finite at all orders

- Shape function approach for angularities
 - $-p_T > \kappa$, PT
 - $p_T < \kappa$, expand exponentials
 - Low p_T replaced by $f_{\rm NP}$ "shape function"

$$E(\nu, Q, a) = E_{PT}(\nu, Q, \kappa, a)$$

$$+ \frac{2}{1-a} \sum_{n=1}^{\infty} \frac{1}{n n!} \left(-\frac{\nu}{Q}\right)^n \int_{0}^{\kappa^2} \frac{dp_T^2}{p_T^2} p_T^n A\left(\alpha_s(p_T)\right) + \dots$$

$$\equiv E_{PT}(\nu, Q, \kappa, a) + \ln \tilde{f}_{a, NP}\left(\frac{\nu}{Q}, \kappa\right)$$

• Shape function factorizes in moments \rightarrow convolution

$$\sigma(\tau_a, Q) = \int d\xi f_{a,\text{NP}}(\xi) \ \sigma_{\text{PT}}(\tau_a - \xi, Q)$$

• Fit at $Q = M_Z \Rightarrow$ predictions for all Q

• Shape function phenomenology for thrust

Strategy: $f_{
m NP}(\epsilon)$ at Z pole; predict other Q (Korchemsky,GS, Belitsky; Gardi Rathsman,Magnea (1998 . . .))

First pass: $f_{0,NP}(\rho) = \text{const } \rho^{a-1} e^{-b\rho^2}$: $a :\sim \langle \text{no. particles / unit rapidity} \rangle$

- Scaling property for τ_a event shapes (C.F. Berger & GS (2003) Berger and Magnea (2004)
- Test of rapidity-independence of NP dynamics

$$\ln \tilde{f}_{a,\text{NP}}\left(\frac{\nu}{Q},\kappa\right) = \frac{1}{1-a} \sum_{n=1}^{\infty} \lambda_n(\kappa) \left(-\frac{\nu}{Q}\right)^n$$

$$\widetilde{f}_a\left(\frac{\nu}{Q},\kappa\right) = \left[\widetilde{f}_0\left(\frac{\nu}{Q},\kappa\right)\right]^{\frac{1}{1-a}}$$

• What PYTHIA gives

- Most event shapes were invented for jet physics of the late 70's
- Address existing data with new analysis
- New observables to analyze final states; aid in searches for new physics (Tkachov (1995), C.F. Berger et al. (Snowmass, 2001))

* Application: power corrections for 1PI Cross Sections

- Joint Resummation (threshold $\otimes k_T$) (Laenen, GS, Vogelsang (2001))
- Analyze transition: fixed target to collider energies
- "Implicit" logs of initial-state Q_T integrated
- Q_T integral (N imaginary) \Rightarrow

$$p_T^3 \frac{d\sigma_{ab}}{dp_T} \sim \int_{-i\infty}^{i\infty} dN \, \tilde{\sigma}_{ab}^{(0)}(N) \, \left(x_T^2\right)^{-N-1}$$

 $\times e^{E \operatorname{thresh}(N, p_T)} e^{\delta \operatorname{Erecoil}(N, p_T)}$

• Isolate perturbative recoil; NNLL in N:

$$\delta E_{\text{recoil}}(N, p_T) = \delta E_{\text{PT}} + \delta E_{\text{NP}}$$
$$\delta E_{\text{PT}} \propto \frac{\alpha_s (p_T^2/N^2)}{\pi} \frac{\zeta(2)}{2}$$

● isolate low scales ↔ strong coupling

$$\delta E_{\rm NP} = \lambda_{ab} \frac{N^2}{p_T^2} \ln \frac{p_T}{N}$$

$$N \leftrightarrow \frac{1}{\ln x_T^2}$$

• Leading power suppression quadratic in $1/p_T$

$$\delta E_{\text{recoil}} = \text{PT} + \text{const.} \frac{1}{p_T^2 \ln^2 \left(\frac{4p_T^2}{S}\right)} \ln \left(p_T \ln \left(\frac{4p_T^2}{S}\right) \right)$$

- Also decreases with S at fixed p_T
- Insight into how NLO gets better: fixed target \Rightarrow colliders

***** Hopeful Conclusions

- Energy flow is common language of hadronic and nuclear scattering.
- Resummations bring pQCD to the doorstep of nonperturbative field theory.
- Study of color and energy flow in hadronic scattering will shed light on the PT \rightarrow NP transition.
- Eventually we will learn to translate fully the language of partons into the language of hadrons for the full range of initial conditions.