Critical Behaviour in QCD

Helmut Satz
Universität Bielefeld, Germany
and
Instituto Superior Técnico, Lisboa, Portugal $^{\text {isb }}$

The Fundamental Problems of Physics

constituents forces
quarksleptonse-m
gluons, photonsvector bosons ($Z, W^{ \pm}$)gravitationHiggsunification, TOE
elementary interactions\Downarrow
complex systems, critical behaviour

states of matter

solid, liquid, gas
glass, gelatine
insulator, conductor
superconductor, ferromagnet
fluid, superfluid
transitions
thermal phase transitions percolation transitions scaling and renormalization critical exponents universality classes

Complex Systems \Rightarrow New Direction in Physics

- Given constituents and dynamics of elementary systems, what is the behaviour of complex systems?
- What are the possible states of matter and how can they be specified?
- How do transitions from one state of matter to another occur?
- Is there a general pattern of critical phenomena, independent of specific dynamics?
Contents

1. The Physics of Complex Systems
1.1 Critical Behaviour in Thermodynamics
1.2 Cluster Formation and Percolation
2. Critical Behaviour in Statistical QCD
2.1 Phases of Strongly Interacting Matter
2.2 From Hadrons to Quarks and Gluons
2.3 Finite Temperature Lattice QCD
3. Probing Matter in Statistical QCD
3.1 Interaction Range and Colour Screening
3.2 Light Hadron Spectroscopy
3.3 Charmonium Spectroscopy

1. The Physics of Complex Systems

1.1 Critical Behaviour in Thermodynamics

Phase transitions are common everyday occurrences
ice \leftrightarrow water \leftrightarrow steam,
melting of metals, magnetization of iron,
insulator \leftrightarrow conductor, ...

But:
they are difficult to treat, because one cannot reduce a complex system to a sum of elementary systems;
therefore new methods of analysis are needed
basic feature of critical phenomena:
discontinuous or singular behaviour of observables
examples:
water \rightarrow steam

V / N	gas	
		mixed phase
liquid		
	T_{C}	T

1 st order transition
magnetization

continuous transition

Ising model

d-dimensional lattice grid, N^{d} sites with spins $s_{i}= \pm 1 \forall i=1, \ldots, N^{d}$, uniform next neighbor interaction $-J s_{i} s_{i+1}$

properties of the system are determined by the partition function

$$
\exp -\beta \mathcal{H}
$$

$Z(T, H=0, N)=\Pi_{i=1}^{N^{d}} \Sigma_{s_{i}= \pm 1} \overbrace{\exp \left\{\beta J \sum_{i, j}^{n n} s_{i} s_{j}-\beta H \sum_{i} s_{i}\right\}}$
temperature $T=\beta^{-1}$, external field H; take $H=0$
$Z(T, H=0 ; N)$ has global symmetry $\left(Z_{2}\right)$:

$$
s_{i} \rightarrow-s_{i} \quad \forall i=1, \ldots, N^{d}
$$

leaves sum over all states $Z(T, H=0 ; N) \underline{\text { invariant }}$
for high temperatures, system agrees:
on the average, \exists disorder, as many spins \uparrow as \downarrow
but below a certain temperature:
\exists order \Rightarrow spontaneous symmetry breaking
on the average, more \uparrow or more \downarrow
Z_{2} invariance of $Z(T, H=0 ; N)$: \uparrow and \downarrow equally likely
need additional measure to specify state of system: order parameter

$$
m(T, N)=\frac{1}{Z(T, N)} \prod_{i=1}^{N^{d}} \sum_{i}\left[\frac{\Sigma_{i} s_{i}}{N^{d}}\right] \exp \left\{\beta J \sum_{i, j}^{n n} s_{i} s_{j}\right\}
$$

under reflection $s_{i} \rightarrow-s_{i} \forall i=1, \ldots, N^{d}: m(T, N) \rightarrow-m(T, N)$
order parameter is not invariant; consequence

$$
m(T) \begin{cases}\neq 0 & \text { for ordered state, broken symmetry } \\ =0 & \text { for disordered state, symmetry }\end{cases}
$$

thermodynamic limit $N \rightarrow \infty$:
$m(T, H=0)$ is not analytic ("smooth")
$m(T) \sim\left\{\begin{array}{cl}\left(T-T_{c}\right)^{\beta}>0 & \forall T<T_{c} \\ 0 & \forall T>T_{c}\end{array}\right.$
\Rightarrow critical exponent β

also other observables show singular behaviour:
free energy

$$
\begin{array}{r}
F(T, H)=-T \log Z(T, H) \\
t=\left(T-T_{c}\right) / T_{c} \\
h=H / T
\end{array}
$$ external field measure

specific heat

$$
C_{H}=T^{2}\left(\frac{\partial^{2} F}{\partial T^{2}}\right)_{H=0} \sim|t|^{-\alpha}
$$

spontaneous magnetization

$$
m(t, h=0)=-\frac{1}{N^{d}}\left(\frac{\partial F}{\partial H}\right)_{H=0} \sim|t|^{\beta}
$$

susceptibility

$$
\chi_{T}=\left(\frac{\partial m}{\partial H}\right)_{H=0} \sim|t|^{-\gamma}
$$

magnetization on critical isotherm

$$
m(t=0, h)=-\frac{1}{N^{d}}\left(\frac{\partial F}{\partial H}\right)_{t=0} \sim h^{1 / \delta}
$$

besides global also local observables diverge:
correlation function $\Gamma(r, t) \sim\left\langle s_{i} s_{i+r}\right\rangle \sim \exp -r / \xi$
correlation length diverges

$$
\xi \sim t^{-\nu}
$$

$t \neq 0$: correlation length finite, dimensional scale, given spin does not see far-away other spins
$t=0$: correlation length diverges, no scale, all spins are correlated, the system cannot be split into independent subsystems
requires new physics: infinite correlated system
\Rightarrow scaling and renormalization
But: why is there singular behaviour?
transition \sim onset of spontaneous symmetry breaking: "either-or", nothing gradual or smooth; you cannot break symmetry "a little".
rescale distances, temperature, external field

$$
r \rightarrow r^{\prime}=b r, \quad t \rightarrow t^{\prime}=b^{y_{t}} t, \quad h \rightarrow h^{\prime}=b^{y_{h}} h
$$

all physics must remain the same
\Rightarrow all critical exponents given in terms of y_{t}, y_{h}
\Rightarrow critical behaviour fully specified by y_{t}, y_{h}
$\Rightarrow y_{t}, y_{h}$ define universality class
$\Rightarrow \underline{\text { Thermodynamic Critical Behaviour* }} \Leftarrow$

- onset of spontaneous symmetry breaking
- singular behaviour of thermodynamic observables
- critical exponents, universality class

[^0]
1.2 Cluster Formation and Percolation

thermal transitions, critical behaviour: dynamics (\mathcal{H}), symmetry for constituents with intrinsic scale, \exists simpler, geometric form of critical behaviour:
\Rightarrow formation of infinite connected clusters or networks
example: 2-d disk percolation (lilies on a pond)

isolated disks

clusters

percolation (network)
distribute small disks of area $a=\pi r^{2}$ randomly on large area $F=L^{2}$, $L \gg r$, with overlap allowed: when can an ant walk across?
for N disks, disk density $n=N / F$ average cluster size $S(n)$ increases with increasing density n
suddenly, for $n \rightarrow n_{c}, S(n)$ becomes
large enough to span the pond: $S \sim F$
for $N \rightarrow \infty, A \rightarrow \infty$:
$S\left(n_{c}\right)$ and $(d S(n) / d n)_{n=n_{c}}$ diverge: $\Rightarrow \underline{\text { percolation }}$

percolation as geometric critical behaviour:
large size limit \sim thermodynamic limit
2 d (disks): $\quad n_{c} \simeq 1.13 / \pi r^{2}, 0.68$ of space covered, 0.32 empty when an ant can cross, a ship cannot, and vice versa: $\underline{2 d \text { effect }}$

3 d (spheres): $\quad n_{c} \simeq 0.34 /(4 \pi / 3) r^{3}, 0.29$ of space covered, 0.71 empty both cluster and empty space connected

$$
n_{c} \simeq 1.24 /(4 \pi / 3) r^{3}, 0.71 \text { of space covered, } 0.29 \text { empty }
$$

connected vacuum disappears
probability $P(n)$ that a given disk is in the infinite cluster

$$
P(n)\left\{\begin{array}{cc}
=0 & \forall n<n_{c} \\
\sim\left(n-n_{c}\right)^{\beta} & \text { for } n \rightarrow n_{c} \text { from above }
\end{array}\right.
$$

\Rightarrow order parameter for percolation
measure average cluster size (excluding infinite cluster)

$$
\tilde{S}(n) \simeq\left|n-n_{c}\right|^{-\gamma}
$$

\sim susceptibility in thermodynamic system
... other observables: again singular behaviour
\rightarrow critical exponents, universality classes
NB: here random distribution of disks/spheres
but distribution law not essential - can also use thermodynamic or any other form of distribution
again many everyday examples:
make pudding, boil an egg: gelatinization
conductivity in random networks, 'ant in a labyrinth'
start a forest fire, find an oil field, ...
instead of symmetry breaking:

$$
\text { disconnected } \rightarrow \text { connected system }
$$

$$
\Rightarrow \text { Geometric Critical Behaviour } \Leftarrow
$$

- onset of infinite cluster formation
- singular behaviour of geometric observables
- critical exponents, universality class

Again, why singular behaviour?
onset of connection is "either-or", you cannot connect "a little".
thermodynamic vs. geometric critical behaviour?
thermodynamic transitions:

- \exists interaction dynamics for constituents
- equal a priori phase space probabilities
- state of system can spontaneously break symmetry of partition function
- \rightarrow non-analytic partition function
geometric transitions:
- \exists interaction range, size for constituents
- arbitrary distribution of constituents
- cluster formation, connection
- spontaneous onset of global connection, divergence of cluster size: percolation
in both cases, singular behaviour

2. Critical Behaviour in Statistical QCD

2.1 Phases of Strongly Interacting Matter

What happens to strongly interacting matter at high temperature and/or density?

- hadrons have intrinsic size $r_{h} \simeq 1 \mathrm{fm}$, need $V_{h} \simeq(4 \pi / 3) r_{h}^{3}$ to exist
\Rightarrow limiting density of hadronic matter

$$
n_{c}=1 / V_{h} \simeq 1.5 n_{0}
$$

[Pomeranchuk 1951]

- resonances \rightarrow exponential hadron spectrum $\rho(m) \sim \exp (b m)$
- statistical bootstrap model
- dual resonance model
[Fubini \& Veneziano 1969; Bardakçi \&Mandelstam 1969]
\Rightarrow limiting temperature of hadronic matter $T_{c}=1 / b \simeq 150-200 \mathrm{MeV}$
\Rightarrow what lies beyond n_{c}, T_{c} ? \Leftarrow
- quark liberation
$\underline{\text { hadronic matter: colorless constituents of hadronic dimension }}$ \Downarrow
quark-gluon plasma: pointlike colored constituents
\Rightarrow deconfinement: insulator-conductor transition in QCD
- quark mass shift
at $T=0$, quarks 'dress' with gluons \rightarrow constituent quarks
bare quark mass $m_{q} \sim 0 \rightarrow$ constituent quark mass $M_{q} \sim 300 \mathrm{MeV}$
in hot medium, dressing 'melts' $M_{q} \rightarrow 0$
for $m_{q}=0, \mathcal{L}_{Q C D}$ has chiral symmetry
$M_{q} \neq 0 \rightarrow$ spontaneous chiral symmetry breaking
$M_{q} \rightarrow 0 \Rightarrow$ chiral symmetry restoration
- diquark matter
deconfined quarks \sim attractive interaction can form colored bosonic 'diquark' pairs (QCD's Cooper pairs) form condensate \Rightarrow color superconductor
- expected phase diagram of QCD:

baryochemical potential $\mu \sim$ baryon density.

2.2 From Hadrons to Quarks and Gluons

simplest confined matter: ideal pion gas $\quad P_{\pi}=\frac{\pi^{2}}{90} 3 T^{4} \simeq \frac{1}{3} T^{4}$
simplest deconfined matter: ideal quark-gluon plasma

$$
P_{Q G P}=\frac{\pi^{2}}{90}\left\{2 \times 8+\frac{7}{8}[2 \times 2 \times 2 \times 3]\right\} T^{4}-B \simeq 4 T^{4}-B
$$

with bag pressure B for outside/inside vacuum
\Rightarrow compare $P_{\pi}(T)$ and $P_{Q G P}(T)$ vs. T

phase transition from hadronic matter at low T to QGP at high T
critical temperature:

$$
P_{\pi}=P_{Q G P} \rightarrow T_{c}^{4} \simeq 0.3 B \simeq 150 \mathrm{MeV}
$$

with $B^{1 / 4} \simeq 200 \mathrm{MeV}$ from quarkonium spectroscopy
corresponding energy densities

$$
\epsilon_{\pi} \simeq T^{4} \rightarrow \epsilon_{Q G P} \simeq 12 T^{4}+B
$$

at T_{c}, energy density changes abruptly by latent heat of deconfinement so far, simplistic model; real world?

2.3 Finite Temperature Lattice QCD

given QCD as dynamics input, calculate resulting thermodynamics, based on QCD partition function
\Rightarrow lattice regularization

- energy density
\Rightarrow latent heat of deconfinement
For $N_{f}=2,2+1$:

$$
\begin{aligned}
& T_{c} \simeq 175 \mathrm{MeV} \\
& \epsilon\left(T_{c}\right) \simeq 0.5-1.0 \mathrm{GeV} / \mathrm{fm}^{3}
\end{aligned}
$$

explicit relation to deconfinement, chiral symmetry restoration?
\Rightarrow order parameters

- deconfinement

$$
\Rightarrow m_{q} \rightarrow \infty
$$

Polyakov loop $L(T) \sim \exp \left\{-F_{Q \bar{Q}} / T\right\}$
$F_{Q \bar{Q}}$: free energy of $Q \bar{Q}$ pair for $r \rightarrow \infty$

$$
L(T) \begin{cases}=0 & T<T_{L} \text { confinement } \\ \neq 0 & T>T_{L} \text { deconfinement }\end{cases}
$$

variation defines deconfinement temperature T_{L}

- chiral symmetry restoration

$$
\Rightarrow m_{q} \rightarrow 0
$$

chiral condensate $\chi(T) \equiv\langle\bar{\psi} \psi\rangle \sim M_{q}$
measures dynamically generated ('constituent') quark mass

$$
\chi(T)\left\{\begin{array}{ll}
\neq 0 & T<T_{\chi} \\
=0 & T>T_{\chi}
\end{array}\right. \text { chiral symmetry broken }
$$

variation defines chiral symmetry temperature T_{χ}

- how are T_{L} and T_{χ} related? pure $S U(N)$ gauge theory: \sim spontaneous Z_{N} breaking at T_{L} full QCD, chiral limit: $\sim \underline{\text { explicit }} Z_{N}$ breaking by $\chi(T) \rightarrow 0$ at T_{χ} chiral symmetry restoration \Rightarrow deconfinement
lattice results

Polyakov loop \& chiral condensate vs. temperature
at $\mu=0, \exists$ one transition hadronic matter \rightarrow QGP
for $N_{f}=2, m_{q} \rightarrow 0$ at $T_{c}=T_{L}=T_{\chi} \simeq 175 \mathrm{MeV}$

- nature of transition at $\mu=0$
- for $m_{q} \rightarrow \infty$ (pure gauge theory) spontaneous Z_{N} breaking \rightarrow deconfinement transition
- for $m_{q} \rightarrow 0$, spontaneous chiral symmetry breaking \rightarrow chiral transition
- for finite quark masses, no spontaneous symmetry breaking or restoration, hence in general no singular behaviour
- both $L(T)$ and $\chi(T)$ vary sharply for all m_{q}, define common transition point T_{c}
- what kind of transition?
depends on N_{f} and m_{q} : continuous, first order "rapid" cross-over

- non-zero net baryon density $\left(\mu \neq 0, N_{b}>N_{\bar{b}}, \quad N_{f}=2+1\right)$
computer algorithms break down: reweighting, analytic continuation, power series...; expect:

critical point in $T-\mu$ plane depends on position of physical point in $m_{s}-m_{u, d}$ plane
- cross-over region (the real world): enigmatic
- no thermal singularity, no thermal phase transition
- so what does it mean: new state of matter?
- observables change rapidly
- clear transition in entire region: why?
- what is the transition mechanism?
- hadronic matter is formed when connected cluster is possible, deconfinement occurs when connected vacuum "disappears"

$$
n_{c}=\frac{0.34}{(4 \pi) r_{h}^{3}} \quad \bar{n}_{c}=\frac{1.24}{(4 \pi) r_{h}^{3}}
$$

end of hadronic state at $\mu \simeq 0$: interacting medium of hadrons resonance domination \Rightarrow ideal gas of hadrons/resonances;
at what T is $n_{h}(T)=n_{c}$?

$$
T_{c} \simeq 170 \mathrm{MeV}
$$

deconfinement as percolation:
when a hadronic medium becomes so dense that only isolated vacuum bubbles survive, then it becomes a quark-gluon plasma

3. Probing Matter in Statistical QCD

given a box of strongly interacting matter in thermal equilibrium, how can theorists determine its state through QCD calculations?

NB:

equilibrium thermodynamics, no collision dynamics, time dependence, equilibration, expansion, cooling, etc.

3.1 Interaction Range and Colour Screening
static quark/antiquark in medium: interaction vs. separation?
at $T=0$, confining "string" potential

$$
V(r) \sim \sigma r
$$

string breaks for $V(r) \geq 2 M_{q}$
\Rightarrow two light-heavy mesons $(Q \bar{q}),(\bar{Q} q)$

with increasing temperature, potential strength and range reduced (from $L L^{+}$correlations) string breaks earlier
\Rightarrow colour screening

(Bielefeld, $\left.16^{3} \times 4, N_{f}=2, m_{q} / T=0.4\right)$
screening radius \sim interaction range
drop sharply as $T \rightarrow T_{c}$
string breaking point falls from $r \simeq 1.5 \mathrm{fm}$ to $r \simeq 0.3 \mathrm{fm}$ for $T / T_{c}=0$ to $T / T_{c}=2$

3.2 Light Hadron Spectroscopy

look at mass spectrum of virtual photons emitted from box

$$
\gamma^{*} \rightarrow e^{+} e^{-}
$$

expect:
in hadronic phase $\rho \rightarrow \gamma^{*} \rightarrow e^{+} e^{-}$ so that $M\left(\gamma^{*}\right) \simeq M(\rho)$
in QGP phase $q \bar{q} \rightarrow \gamma^{*} \rightarrow e^{+} e^{-}$ so that $M\left(\gamma^{*}\right) \sim T$
lattice calculations:

(Bielefeld, quenched QCD, $64^{3} \times 16$)
confined state: hadronic scale, peak at ρ mass position \sim temperature-independent
deconfined state: temperature scale, broad peak at position $\sim T$

3.2 Charmonium Spectroscopy

existence of heavy quark-antiquark bound states $\left(J / \psi, \chi_{c}, \psi^{\prime}, \ldots\right)$ as indicator of nature and temperature of medium
lattice calculations for spectral functions of $c \bar{c}$ systems (Bielefeld, quenched QCD, $48^{3} \times 10-24$)
J / ψ persists up to $2.3 T_{c}>T \geq 1.5 T_{c}$
χ_{c} is dissociated for $T \geq 1.1 T_{c}$ widths?

cross check:
compare to interaction range, potential models (Schrödinger equ'n) χ_{c} and ψ^{\prime} analyze deconfinement transition

Critical Behaviour in QCD

for $\mu \simeq 0$ and all values of m_{q}, N_{f}
\exists a well-defined transition temperature T_{c} at which

- deconfinement sets in
- chiral symmetry is restored
- latent heat of deconfinement increases energy density
- colour screening decreases interaction range
- dilepton spectra go from hadron decay to thermal annihilation
- charmonium dissociation analyzes transition region

To study critical behaviour, you must find the transition point and determine how the system and its observables change from one side to the other.

To illustrate relation thermal vs. geometric, again see Ising model

- $H=0$: use Ising dynamics for cluster definition
\Rightarrow percolation \equiv magnetization transition equivalent formulations of same phenomenon
- $H \neq 0$, no thermodynamic transition partition function is analytic symmetry is always broken percolation persists: \Rightarrow "Kertesz line"
- thermodynamic \sim geometric geometric \nsim thermodynamic

percolation can occur even when partition function is analytic cluster observables still diverge

```
...there are more critical phenomena in nature
than the partition function knows of...
```

So what does happen along the "Kertesz line"?
2-d Ising model, external field $H \uparrow$
consider average number $n(S)$ of clusters of size S of \downarrow spins:

$$
n(S) \sim \frac{\exp \left\{-h S-\Gamma(T) S^{1 / 2}\right\}}{S^{\tau}} \sim \frac{\exp \left\{-h S\left[1-(\Gamma(T) / h) S^{-1 / 2}\right]\right\}}{S^{\tau}}
$$

with "bulk" term $h S$ and "surface" term $\Gamma S^{1 / 2}$
surface pressure $\Gamma(T)$ is order parameter for percolation

$$
\Gamma(T) \sim\left\{\begin{array}{cc}
\left(T-T_{k}\right)^{\beta_{k}}>0 & \forall T<T_{k} \\
0 & \forall T>T_{k}
\end{array}\right.
$$

defines Kertesz line, is singular even for analytic partition function in thermodynamic limit $S \rightarrow \infty$, surface term does not contribute $\underline{\text { percolation } \sim \text { NLO critical behaviour }}$

[^0]: * continous transitions

