3. 11. 2004

Critical Behaviour in QCD

Helmut Satz

Universität Bielefeld, Germany and Instituto Superior Técnico, L_{isboa}, Portugal

Hard Probes 2004

Ericeira, Portugal

The Fundamental Problems of Physics

constituents

quarks leptons gluons, photons vector bosons (Z, W^{\pm}) Higgs

forces

strong e-m weak gravitation unification, TOE

elementary interactions

\downarrow complex systems, critical behaviour

states of matter

transitions

solid, liquid, gas glass, gelatine insulator, conductor superconductor, ferromagnet fluid, superfluid thermal phase transitions percolation transitions scaling and renormalization critical exponents universality classes

Complex Systems \Rightarrow New Direction in Physics

- Given constituents and dynamics of elementary systems, what is the behaviour of complex systems?
- What are the possible states of matter and how can they be specified?
- How do transitions from one state of matter to another occur?
- Is there a general pattern of critical phenomena, independent of specific dynamics?

Contents

1. The Physics of Complex Systems

- 1.1 Critical Behaviour in Thermodynamics
- **1.2** Cluster Formation and Percolation

2. Critical Behaviour in Statistical QCD

- 2.1 Phases of Strongly Interacting Matter
- 2.2 From Hadrons to Quarks and Gluons
- 2.3 Finite Temperature Lattice QCD

3. Probing Matter in Statistical QCD

- 3.1 Interaction Range and Colour Screening
- 3.2 Light Hadron Spectroscopy
- 3.3 Charmonium Spectroscopy

1. The Physics of Complex Systems

1.1 Critical Behaviour in Thermodynamics

Phase transitions are common everyday occurrences

ice \leftrightarrow water \leftrightarrow steam, melting of metals, magnetization of iron, insulator \leftrightarrow conductor, ...

But:

they are difficult to treat, because one cannot reduce a complex system to a sum of elementary systems; therefore <u>new methods of analysis</u> are needed

basic feature of critical phenomena:

discontinuous or singular behaviour of observables

Ising model

d-dimensional lattice grid, N^d sites with spins $s_i = \pm 1 \ \forall i = 1, ..., N^d$, uniform next neighbor interaction $-Js_is_{i+1}$

properties of the system are determined by the partition function

 $\exp -\beta \mathcal{H}$ $Z(T, H=0, N) = \prod_{i=1}^{N^d} \sum_{s_i=\pm 1} \exp\{\beta J \sum_{i,j}^{m} s_i s_j - \beta H \sum_i s_i\}$ temperature $T = \beta^{-1}$, external field H; take H = 0 Z(T, H=0; N) has global symmetry (Z₂): $s_i \to -s_i \quad \forall \ i = 1, ..., N^d$

leaves sum over all states Z(T, H=0; N) invariant

for high temperatures, system agrees: on the average, \exists disorder, as many spins \uparrow as \downarrow

but below a certain temperature: $\exists \text{ order} \Rightarrow \underline{\text{spontaneous symmetry breaking}}$ on the average, more \uparrow or more \downarrow

 Z_2 invariance of Z(T, H=0; N): \uparrow and \downarrow equally likely

need additional measure to specify state of system: order parameter

$$m(T,N) = \frac{1}{Z(T,N)} \prod_{i=1}^{N^d} \sum_{i} \left[\frac{\sum_i s_i}{N^d} \right] \exp\{\beta J \sum_{i,j}^{nn} s_i s_j\}$$

under reflection $s_i \rightarrow -s_i \forall i = 1, ..., N^d$: $m(T, N) \rightarrow -m(T, N)$

order parameter is not invariant; consequence

 $m(T) \begin{cases} \neq 0 & \text{for ordered state, broken symmetry} \\ = 0 & \text{for disordered state, symmetry} \end{cases}$

<u>thermodynamic limit</u> $N \to \infty$: m(T, H = 0) is not analytic ("smooth") $m(T) \sim \begin{cases} (T - T_c)^{\beta} > 0 & \forall T < T_c \\ 0 & \forall T > T_c \end{cases}$ \Rightarrow critical exponent β

also other observables show singular behaviour:

free energy temperature measure external field measure

$$F(T, H) = -T \log Z(T, H)$$
$$t = (T - T_c)/T_c$$
$$h = H/T$$

specific heat

$$C_H = T^2 \left(\frac{\partial^2 F}{\partial T^2}\right)_{H=0} \sim |t|^{-\alpha}$$

spontaneous magnetization

$$m(t, h = 0) = -\frac{1}{N^d} \left(\frac{\partial F}{\partial H}\right)_{H=0} \sim |t|^{\beta}$$

 $\underline{susceptibility}$

$$\chi_T = \left(\frac{\partial m}{\partial H}\right)_{H=0} \sim |t|^{-\gamma}$$

magnetization on critical isotherm

$$m(t=0,h) = -\frac{1}{N^d} \left(\frac{\partial F}{\partial H}\right)_{t=0} \sim h^{1/\delta}$$

besides global also local observables diverge:

correlation function $\Gamma(r,t) \sim \langle s_i s_{i+r} \rangle \sim \exp{-r/\xi}$ correlation length diverges

 $\xi \sim t^{-\nu}$

 $t \neq 0$: correlation length finite, dimensional scale, given spin does not see far-away other spins

t = 0: correlation length diverges, no scale, all spins are correlated, the system cannot be split into independent subsystems

requires new physics: infinite correlated system

 \Rightarrow scaling and renormalization

(Kadanoff, Wilson)

But: why is there singular behaviour?

transition \sim onset of <u>spontaneous symmetry breaking</u>: "either-or", nothing gradual or smooth; you cannot break symmetry "a little".

rescale distances, temperature, external field

 $r \to r' = br, \quad t \to t' = b^{y_t}t, \quad h \to h' = b^{y_h}h$

all physics must remain the same

- \Rightarrow all critical exponents given in terms of y_t, y_h
- \Rightarrow critical behaviour fully specified by y_t, y_h
- $\Rightarrow y_t, y_h$ define <u>universality class</u>

 \Rightarrow Thermodynamic Critical Behaviour* \Leftarrow

- onset of spontaneous symmetry breaking
- singular behaviour of thermodynamic observables
- critical exponents, universality class

^{*} continous transitions

1.2 Cluster Formation and Percolation

thermal transitions, critical behaviour: dynamics (\mathcal{H}) , symmetry

for constituents with intrinsic scale,

 \exists simpler, geometric form of critical behaviour:

 \Rightarrow formation of infinite connected clusters or networks

example: 2-d disk percolation (lilies on a pond)

distribute small disks of area $a = \pi r^2$ randomly on large area $F = L^2$, $L \gg r$, with overlap allowed: when can an ant walk across?

for N disks, disk density n = N/F

average cluster size S(n) increases with increasing density n

suddenly, for $n \to n_c$, S(n) becomes large enough to span the pond: $S \sim F$

for $N \to \infty, A \to \infty$: $S(n_c)$ and $(dS(n)/dn)_{n=n_c}$ diverge: \Rightarrow percolation

percolation as geometric critical behaviour: large size limit \sim thermodynamic limit

- 2 d (disks): $n_c \simeq 1.13/\pi r^2$, 0.68 of space covered, 0.32 empty when an ant can cross, a ship cannot, and vice versa: 2d effect
- 3 d (spheres): $n_c \simeq 0.34/(4\pi/3) r^3$, 0.29 of space covered, 0.71 empty both cluster and empty space connected $n_c \simeq 1.24/(4\pi/3) r^3$, 0.71 of space covered, 0.29 empty

connected vacuum disappears

probability P(n) that a given disk is in the infinite cluster

$$P(n) \begin{cases} = 0 & \forall n < n_c \\ \sim (n - n_c)^{\beta} & \text{for } n \to n_c \text{ from above} \end{cases}$$

 \Rightarrow order parameter for percolation

measure average cluster size (excluding infinite cluster)

 $\tilde{S}(n) \simeq |n - n_c|^{-\gamma}$

 \sim susceptibility in thermodynamic system

... other observables: again singular behaviour

 \rightarrow critical exponents, universality classes

NB: here random distribution of disks/spheres

but distribution law not essential – can also use thermodynamic or any other form of distribution again many everyday examples:

make pudding, boil an egg: <u>gelatinization</u> conductivity in <u>random networks</u>, 'ant in a labyrinth' start a forest fire, find an oil field, ...

instead of symmetry breaking:

 $\mathbf{disconnected} \rightarrow \mathbf{connected} \ \mathbf{system}$

 \Rightarrow Geometric Critical Behaviour \Leftarrow

- onset of infinite cluster formation
- singular behaviour of geometric observables
- critical exponents, universality class

Again, why singular behaviour?

onset of connection is "either-or", you cannot connect "a little".

thermodynamic vs. geometric critical behaviour?

thermodynamic transitions:

- \exists interaction dynamics for constituents
- equal *a priori* phase space probabilities
- state of system can spontaneously break symmetry of partition function
- $\bullet \rightarrow$ non-analytic partition function

geometric transitions:

- \exists interaction range, size for constituents
- arbitrary distribution of constituents
- cluster formation, connection
- spontaneous onset of global connection, divergence of cluster size: percolation

in both cases, singular behaviour

2. Critical Behaviour in Statistical QCD

2.1 Phases of Strongly Interacting Matter

What happens to strongly interacting matter at high temperature and/or density?

- hadrons have intrinsic size $r_h \simeq 1$ fm, need $V_h \simeq (4\pi/3)r_h^3$ to exist
 - $\Rightarrow \frac{\text{limiting density}}{n_c = 1/V_h \simeq 1.5 \ n_0}$ of hadronic matter

[Pomeranchuk 1951]

- resonances \rightarrow exponential hadron spectrum $\rho(m) \sim \exp(bm)$
 - statistical bootstrap model [Hagedorn 1968]
 - dual resonance model

[Fubini & Veneziano 1969; Bardakçi & Mandelstam 1969]

 \Rightarrow **limiting temperature** of hadronic matter

 $T_c = 1/b \simeq 150 - 200 \text{ MeV}$

 \Rightarrow what lies beyond $n_c, T_c? \Leftarrow$

• quark liberation

hadronic matter: colorless constituents of hadronic dimension \downarrow <u>quark-gluon plasma:</u> pointlike colored constituents \Rightarrow deconfinement: insulator-conductor transition in QCD

• quark mass shift

at T = 0, quarks 'dress' with gluons $\rightarrow \text{constituent quarks}$ bare quark mass $m_q \sim 0 \rightarrow \text{constituent quark mass } M_q \sim 300 \text{ MeV}$ in hot medium, dressing 'melts' $M_q \rightarrow 0$ for $m_q = 0$, \mathcal{L}_{QCD} has chiral symmetry $M_q \neq 0 \rightarrow \text{spontaneous chiral symmetry breaking}$

 $M_q \rightarrow 0 \Rightarrow$ chiral symmetry restoration

• diquark matter

deconfined quarks ~ attractive interaction can form colored bosonic 'diquark' pairs (QCD's Cooper pairs) form condensate \Rightarrow <u>color superconductor</u>

• expected phase diagram of QCD:

baryochemical potential $\mu \sim$ baryon density.

2.2 From Hadrons to Quarks and Gluons

simplest confined matter: ideal pion gas $P_{\pi} = \frac{\pi^2}{90} \ 3 \ T^4 \simeq \frac{1}{3} \ T^4$

simplest deconfined matter: ideal quark-gluon plasma

$$P_{QGP} = \frac{\pi^2}{90} \{ 2 \times 8 + \frac{7}{8} [2 \times 2 \times 2 \times 3] \} T^4 - B \simeq 4 T^4 - B$$

with bag pressure B for outside/inside vacuum

 \Rightarrow compare $P_{\pi}(T)$ and $P_{QGP}(T)$ vs. T

phase transition from hadronic matter at low T to QGP at high T

critical temperature:

 $P_{\pi} = P_{QGP} \rightarrow T_c^4 \simeq 0.3 \ B \simeq 150 \ \text{MeV}$

with $B^{1/4} \simeq 200$ MeV from quarkonium spectroscopy

corresponding energy densities

 $\epsilon_{\pi} \simeq T^4 \to \epsilon_{QGP} \simeq 12 \ T^4 + B$

at T_c , energy density changes abruptly by <u>latent heat of deconfinement</u> so far, simplistic model; real world? given QCD as dynamics input, calculate resulting thermodynamics, based on QCD partition function

- \Rightarrow lattice regularization
 - energy density 16.0 \Rightarrow latent heat of deconfinement 14.0 _ ε/Τ₄ 12.0 For $N_f = 2, 2 + 1$: 10.0 8.0 $T_c \simeq 175 \text{ MeV}$ $\epsilon(T_c) \simeq 0.5 - 1.0 \text{ GeV/fm}^3$ 6.0 3 flavour 4.0 2 flavour 2.0 T/T_c 0.0 1.5 1.0 2.0 2.5 3.0 4.0 3.5

explicit relation to deconfinement, chiral symmetry restoration?

 \Rightarrow order parameters

• deconfinement

$$\Rightarrow m_q \to \infty$$

 $\begin{array}{ll} \textbf{Polyakov loop} & L(T) \sim \exp\{-F_{Q\bar{Q}}/T\} \\ F_{Q\bar{Q}} \textbf{: free energy of } Q\bar{Q} \textbf{ pair for } r \to \infty \\ \\ & L(T) \begin{cases} = 0 & T < T_L \text{ confinement} \\ \neq 0 & T > T_L \text{ deconfinement} \end{cases} \end{array}$

variation defines deconfinement temperature T_L

<u>chiral symmetry restoration</u>

$$\Rightarrow m_q \rightarrow 0$$

chiral condensate $\chi(T) \equiv \langle \bar{\psi}\psi \rangle \sim M_q$

measures dynamically generated ('constituent') quark mass

 $\chi(T) \begin{cases} \neq 0 & T < T_{\chi} \text{ chiral symmetry broken} \\ = 0 & T > T_{\chi} \text{ chiral symmetry restored} \end{cases}$

variation defines chiral symmetry temperature T_{χ}

• how are T_L and T_{χ} related?

pure SU(N) gauge theory: ~ <u>spontaneous</u> Z_N breaking at T_L full QCD, chiral limit: ~ <u>explicit</u> Z_N breaking by $\chi(T) \rightarrow 0$ at T_{χ} chiral symmetry restoration \Rightarrow deconfinement

Polyakov loop & chiral condensate vs. temperature

at $\mu = 0$, \exists <u>one transition</u> hadronic matter \rightarrow QGP for $N_f = 2, m_q \rightarrow 0$ at $T_c = T_L = T_{\chi} \simeq 175$ MeV

- <u>nature of transition</u> at $\mu = 0$
 - for $m_q \rightarrow \infty$ (pure gauge theory) spontaneous Z_N breaking \rightarrow deconfinement transition
 - for $m_q \rightarrow 0$, spontaneous chiral symmetry breaking \rightarrow chiral transition
 - for finite quark masses, no spontaneous symmetry breaking or restoration, hence in general no singular behaviour
 - both L(T) and $\chi(T)$ vary sharply for all m_q , define common transition point T_c
 - what kind of transition?

depends on N_f and m_q : continuous, first order "rapid" cross-over

• non-zero net baryon density $(\mu \neq 0, N_b > N_{\bar{b}}, N_f = 2 + 1)$

computer algorithms break down: reweighting, analytic continuation, power series...; expect:

critical point in $T-\mu$ plane depends on position of <u>physical point</u> in $m_s - m_{u,d}$ plane

- <u>cross-over</u> region (the real world): <u>enigmatic</u>
 - no thermal singularity, no thermal phase transition
 - so what does it mean: new state of matter?
 - observables change rapidly
 - clear transition in entire region: why?
 - what is the transition mechanism?

• hadronic <u>matter</u> is formed when connected cluster is possible, deconfinement occurs when connected vacuum "disappears"

end of hadronic state at $\mu \simeq 0$: interacting medium of hadrons resonance domination \Rightarrow ideal gas of hadrons/resonances; at what T is $n_h(T) = n_c$?

 $T_c \simeq 170 \text{ MeV}$

deconfinement as percolation:

when a hadronic medium becomes so dense that only <u>isolated</u> vacuum bubbles survive, then it becomes a quark-gluon plasma

3. Probing Matter in Statistical QCD

given a box of strongly interacting matter in thermal equilibrium, how can theorists determine its state through <u>QCD calculations</u>?

NB:

equilibrium thermodynamics, no collision dynamics, time dependence, equilibration, expansion, cooling, etc.

3.1 Interaction Range and Colour Screening

static quark/antiquark in medium: interaction vs. separation?

at T = 0, confining "string" potential

 $V(r) \sim \sigma r$

string breaks for $V(r) \ge 2M_q$

 \Rightarrow two light-heavy mesons $(Q\bar{q}), (\bar{Q}q)$

with increasing temperature, potential strength and range reduced (from LL^+ correlations) string breaks earlier

 \Rightarrow colour screening

(Bielefeld, $16^3 \times 4$, $N_f = 2$, $m_q/T = 0.4$)

 $\frac{\text{screening radius}}{\text{drop sharply as } T \rightarrow T_c}$ string breaking point falls

from $r \simeq 1.5$ fm to $r \simeq 0.3$ fm for $T/T_c = 0$ to $T/T_c = 2$

3.2 Light Hadron Spectroscopy

look at mass spectrum of virtual photons emitted from box

lattice calculations:

(Bielefeld, quenched QCD, $64^3 \times 16$)

deconfined state: temperature scale, broad peak at position $\sim T$

 $\gamma^* \rightarrow e^+ e^-$

3.2 Charmonium Spectroscopy

existence of heavy quark-antiquark bound states $(J/\psi, \chi_c, \psi',...)$ as indicator of nature and temperature of medium

0.5

1.0

1.5

 T/T_{c}

Critical Behaviour in QCD

for $\mu \simeq 0$ and all values of m_q, N_f \exists a well-defined transition temperature T_c at which

- deconfinement sets in
- chiral symmetry is restored
- latent heat of deconfinement increases energy density
- colour screening decreases interaction range
- dilepton spectra go from hadron decay to thermal annihilation
- charmonium dissociation analyzes transition region

To study critical behaviour, you must find the transition point and determine how the system and its observables

change from one side to the other.

To illustrate relation thermal vs. geometric, again see Ising model

- *H*=0: use Ising dynamics for cluster definition
 ⇒ percolation ≡ magnetization transition
 equivalent formulations of same phenomenon
- *H*≠0, no thermodynamic transition
 partition function is <u>analytic</u>
 symmetry is always <u>broken</u>
 percolation persists: ⇒ "Kertesz line"
- thermodynamic \sim geometric geometric $\not\sim$ thermodynamic

percolation can occur even when partition function is analytic – cluster observables still diverge

...there are more critical phenomena in nature than the partition function knows of...

So what does happen along the "Kertesz line"?

2-d Ising model, external field $H \uparrow$ consider average number n(S) of clusters of size S of \downarrow spins:

$$n(S) \sim \frac{\exp\{-hS - \Gamma(T)S^{1/2}\}}{S^{\tau}} \sim \frac{\exp\{-hS\left[1 - (\Gamma(T)/h)S^{-1/2}\right]\}}{S^{\tau}}$$

with "bulk" term h S and "surface" term $\Gamma S^{1/2}$

surface pressure $\Gamma(T)$ is order parameter for percolation

$$\Gamma(T) \sim \begin{cases} (T - T_k)^{\beta_k} > 0 & \forall \ T < T_k \\ 0 & \forall \ T > T_k \end{cases}$$

defines Kertesz line, is singular even for analytic partition function in thermodynamic limit $S \to \infty$, surface term does not contribute

percolation \sim NLO critical behaviour