Quark Number Susceptibilities & The Wróblewski Parameter

Rajiv V. Gavai *
T. I. F. R., Mumbai, India

^{*} In collaboration with Sourendu Gupta, TIFR, Mumbai

Quark Number Susceptibilities & The Wróblewski Parameter

Rajiv V. Gavai *
T. I. F. R., Mumbai, India

Introduction

Quark Number Susceptibility

The Wróblewski Parameter

Summary

^{*} In collaboration with Sourendu Gupta, TIFR, Mumbai

 Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett '82, Phys. Rept '86..).

- Most signal considerations based on Simple Models.
 - $T_{QGP} > m_{strange}$
 - Energy Threshold for $(s\bar{s})$ in QGP < in Hadron Gas.
 - Production rate : $\sigma_{QGP}(s\bar{s}) > \sigma_{HG}(s\bar{s})$.

• A variety of aspects studied and many different variations proposed.

 Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett '82, Phys. Rept '86..).

- Most signal considerations based on Simple Models.
 - $-T_{QGP} > m_{strange}$
 - Energy Threshold for $(s\bar{s})$ in QGP < in Hadron Gas.
 - Production rate : $\sigma_{QGP}(s\bar{s}) > \sigma_{HG}(s\bar{s})$.

A variety of aspects studied and many different variations proposed.

• Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett '82, Phys. Rept '86..).

- Most signal considerations based on Simple Models.
 - $T_{QGP} > m_{strange}$
 - Energy Threshold for $(s\bar{s})$ in QGP < in Hadron Gas.
 - Production rate : $\sigma_{QGP}(s\bar{s}) > \sigma_{HG}(s\bar{s})$.

• A variety of aspects studied and many different variations proposed.

• Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett '82, Phys. Rept '86..).

- Most signal considerations based on Simple Models.
 - $T_{QGP} > m_{strange}$
 - Energy Threshold for $(s\bar{s})$ in QGP < in Hadron Gas.
 - Production rate : $\sigma_{QGP}(s\bar{s}) > \sigma_{HG}(s\bar{s})$.

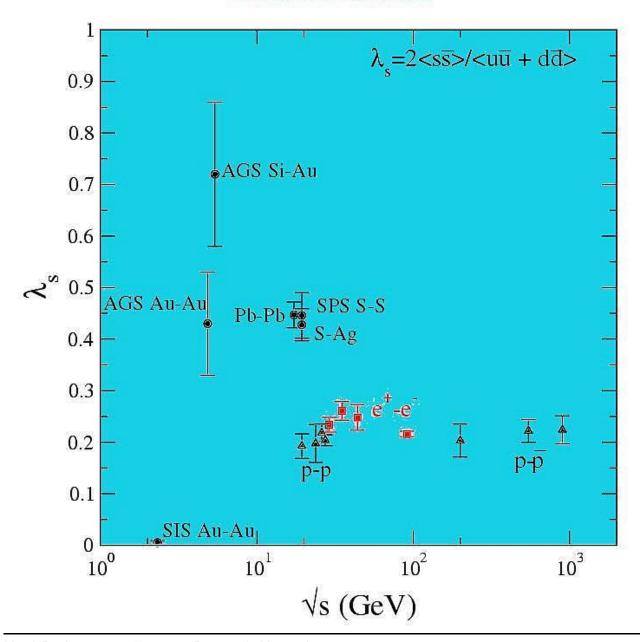
A variety of aspects studied and many different variations proposed.

• Enhancement of strangeness production as a promising signal of QGP (Rafelski-Müller, Phys. Rev. Lett '82, Phys. Rept '86..).

- Most signal considerations based on Simple Models.
 - $T_{QGP} > m_{strange}$
 - Energy Threshold for $(s\bar{s})$ in QGP < in Hadron Gas.
 - Production rate : $\sigma_{QGP}(s\bar{s}) > \sigma_{HG}(s\bar{s})$.

A variety of aspects studied and many different variations proposed.

Wroblewski Parameter



Ratio of newly created strange quarks to light quarks:

$$\lambda_s = \frac{2\langle s\bar{s}\rangle}{\langle u\bar{u} + d\bar{d}\rangle} \quad (1)$$

Figure from Becattini et al., Statistical Thermal Model fit, Phys. Rev. C 64, 024901 (2001).

Quark Number Susceptibility

Assuming three flavours, u, d, and s quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f)$$
 (2)

Quark Number Susceptibility

Assuming three flavours, u, d, and s quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f)$$
 (2)

Defining $\mu_0 = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as :

(Gottlieb et al. '87, '96, '97, Gavai et al. '89)

Quark Number Susceptibility

Assuming three flavours, u, d, and s quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int DU \exp(-S_G) \prod_{f=u,d,s} \operatorname{Det} M(m_f,\mu_f)$$
 (2)

Defining $\mu_0 = \mu_u + \mu_d + \mu_s$ and $\mu_3 = \mu_u - \mu_d$, baryon and isospin density/susceptibilities can be obtained as :

(Gottlieb et al. '87, '96, '97, Gavai et al. '89)

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}, \qquad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}, \qquad i, j = 0, 3, u, d, s$$

Higher order susceptibilities are defined by

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} .$$
(3)

Higher order susceptibilities are defined by

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} . \tag{3}$$

These are Taylor coefficients of the pressure P in its expansion in μ . All of these can be written as traces of products of M^{-1} and various derivatives of M.

Higher order susceptibilities are defined by

$$\chi_{fg\cdots} = \frac{T}{V} \frac{\partial^n \log Z}{\partial \mu_f \partial \mu_g \cdots} = \frac{\partial^n P}{\partial \mu_f \partial \mu_g \cdots} . \tag{3}$$

These are Taylor coefficients of the pressure P in its expansion in μ . All of these can be written as traces of products of M^{-1} and various derivatives of M.

Setting $\mu_i = 0$, $n_i = 0$ but the diagonal χ_{ii} 's are nontrivial :

$$\chi_0 = \frac{T}{2V} [\langle \mathcal{O}_2(m_u) + \frac{1}{2} \mathcal{O}_{11}(m_u) \rangle] \tag{4}$$

$$\chi_3 = \frac{T}{2V} \langle \mathcal{O}_2(m_u) \rangle \tag{5}$$

$$\chi_s = \frac{T}{4V} [\langle \mathcal{O}_2(m_s) + \frac{1}{4} \mathcal{O}_{11}(m_s) \rangle] \tag{6}$$

Tr $A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2N_v$, and $(\text{Tr } A)^2 = 2 \sum_{i>j=1}^{L} (\text{Tr } A)_i (\text{Tr } A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

Tr $A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2N_v$, and (Tr A)² = $2 \sum_{i>j=1}^{L} (\text{Tr } A)_i (\text{Tr } A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

• We have argued that

$$\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d} \,. \tag{7}$$

Tr $A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2N_v$, and $(\text{Tr } A)^2 = 2 \sum_{i>j=1}^{L} (\text{Tr } A)_i (\text{Tr } A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

♠ We have argued that

$$\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d} \,. \tag{7}$$

(Gavai & Gupta, PR D '02)

Quark Number Susceptibilities also crucial for other QGP Signatures: Q, B Fluctuations

Tr $A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2N_v$, and $(\text{Tr } A)^2 = 2 \sum_{i>j=1}^{L} (\text{Tr } A)_i (\text{Tr } A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

♠ We have argued that

$$\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d} \,. \tag{7}$$

- ♠ Quark Number Susceptibilities also crucial for other QGP Signatures : Q, B Fluctuations
- \spadesuit Finite Density Results by Taylor Expansion in μ

Tr $A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2N_v$, and $(\text{Tr } A)^2 = 2 \sum_{i>j=1}^{L} (\text{Tr } A)_i (\text{Tr } A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

♠ We have argued that

$$\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d} \,. \tag{7}$$

- ♠ Quark Number Susceptibilities also crucial for other QGP Signatures : Q, B Fluctuations
- \spadesuit Finite Density Results by Taylor Expansion in μ
- ♠ Theoretical Checks : Resummed Perturbation expansions, Dimensional Reduction..

Tr $A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2N_v$, and $(\text{Tr } A)^2 = 2 \sum_{i>j=1}^{L} (\text{Tr } A)_i (\text{Tr } A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

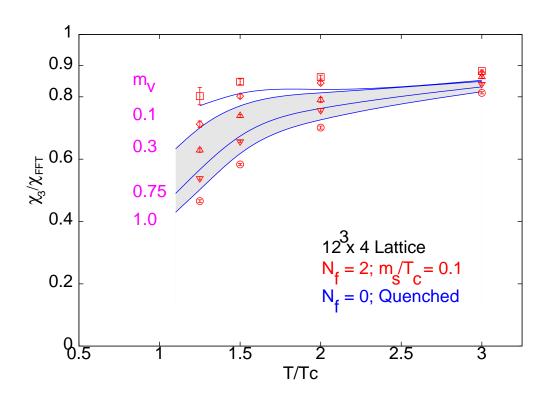
♠ We have argued that

$$\lambda_s = \frac{2\chi_s}{\chi_u + \chi_d} \,. \tag{7}$$

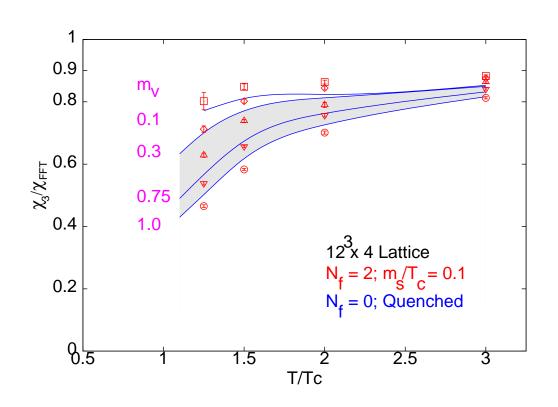
- ♠ Quark Number Susceptibilities also crucial for other QGP Signatures : Q, B Fluctuations
- \spadesuit Finite Density Results by Taylor Expansion in μ
- ♠ Theoretical Checks : Resummed Perturbation expansions, Dimensional Reduction..
- \spadesuit Our improvement: Fixed m_q/T_c , Continuum limit...

Gavai & Gupta PR D '01; Gavai, Gupta & Majumdar, PR D 2002.

Gavai & Gupta PR D '01; Gavai, Gupta & Majumdar, PR D 2002.



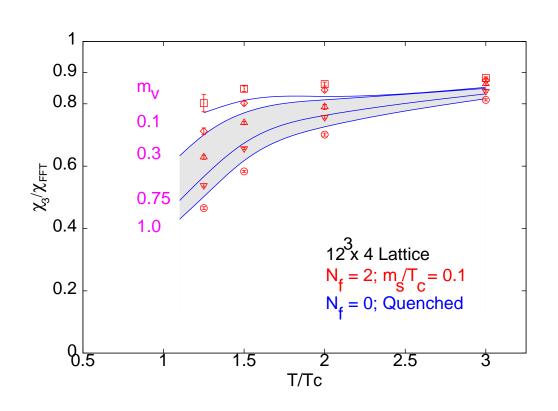
Gavai & Gupta PR D '01; Gavai, Gupta & Majumdar, PR D 2002.



Note:

1) χ_{FFT} — Ideal gas results for same Lattice.

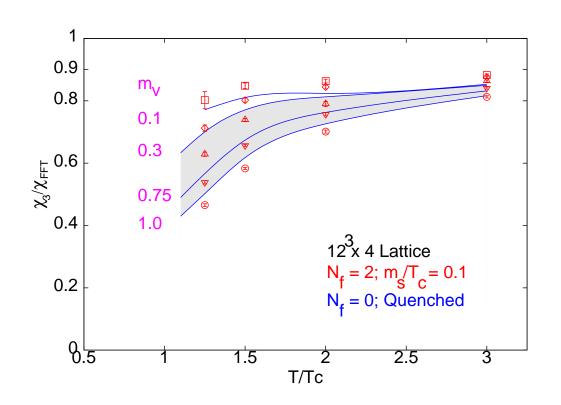
Gavai & Gupta PR D '01; Gavai, Gupta & Majumdar, PR D 2002.



Note:

- 1) χ_{FFT} Ideal gas results for same Lattice.
- 2) Unquenching effects small, although T_c changed from 270 MeV to 170 MeV

Gavai & Gupta PR D '01; Gavai, Gupta & Majumdar, PR D 2002.



Note:

- 1) χ_{FFT} Ideal gas results for same Lattice.
- 2) Unquenching effects small, although T_c changed from 270 MeV to 170 MeV
- 3) PDG values for strange quark mass $\Longrightarrow m_v^{strange}/T_c$ $\simeq 0.3\text{-}0.7~(N_f{=}0);$ 0.45-1.0($N_f{=}2$).

Perturbation Theory

Perturbation Theory

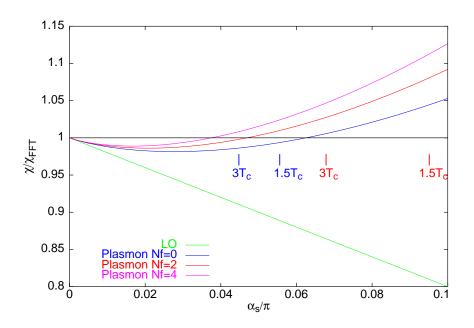
Weak coupling expansion gives:

$$\frac{\chi}{\chi_{FFT}} = 1 - 2\left(\frac{\alpha_s}{\pi}\right) + 8\sqrt{(1 + 0.167N_f)} \left(\frac{\alpha_s}{\pi}\right)^{\frac{3}{2}} - 6\left(\frac{\alpha_s}{\pi}\right)^2 \log\frac{1}{4\pi\alpha_s} + \mathcal{O}(\alpha_s^2)$$
(Toimela 1985; Kapusta 1989).

Perturbation Theory

Weak coupling expansion gives:

$$\frac{\chi}{\chi_{FFT}} = 1 - 2\left(\frac{\alpha_s}{\pi}\right) + 8\sqrt{(1 + 0.167N_f)} \left(\frac{\alpha_s}{\pi}\right)^{\frac{3}{2}} - 6\left(\frac{\alpha_s}{\pi}\right)^2 \log\frac{1}{4\pi\alpha_s} + \mathcal{O}(\alpha_s^2)$$
(Toimela 1985; Kapusta 1989).



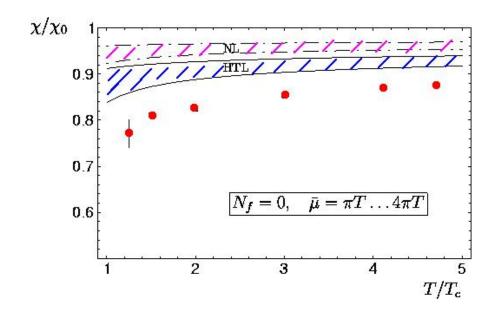
♠ Minm 0.981 (0.986) at 0.03 (0.02) for $N_f = 0$ (2).
♠ For $1.5 \le T/T_c \le 3$ pert. theory \longrightarrow 0.99-0.98 (1.08=1.03) for $N_f = 0$ (2).

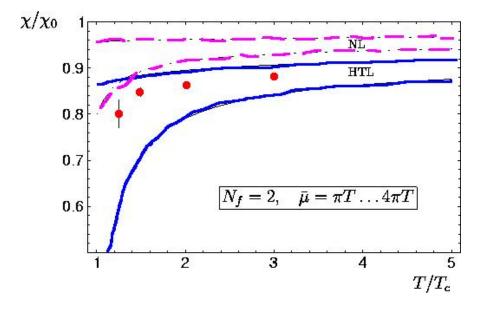
Hard Thermal Loop & Self-consistent resummation give :

(Blaizot, Iancu & Rebhan, PLB '01; Chakraborty, Mustafa & Thoma, EPJC '02).

Hard Thermal Loop & Self-consistent resummation give :

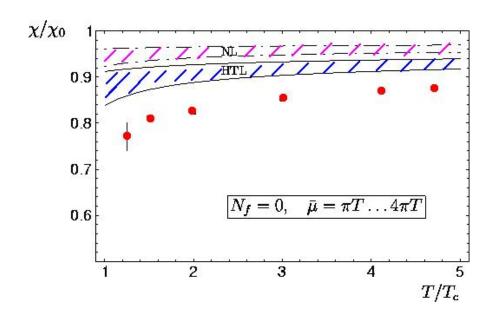
(Blaizot, Iancu & Rebhan, PLB '01; Chakraborty, Mustafa & Thoma, EPJC '02).

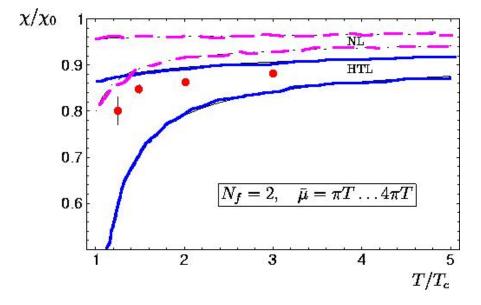




Hard Thermal Loop & Self-consistent resummation give :

(Blaizot, Iancu & Rebhan, PLB '01; Chakraborty, Mustafa & Thoma, EPJC '02).





Our results for $N_t = 4 \rightsquigarrow \text{Lattice artifacts}$? Check for larger N_t and improved actions.

(Gavai & Gupta, PR D '02 and PR D '03)

(Gavai & Gupta, PR D '02 and PR D '03)

 \spadesuit Investigate larger N_t : 6, 8, 10, 12 and 14.

(Gavai & Gupta, PR D '02 and PR D '03)

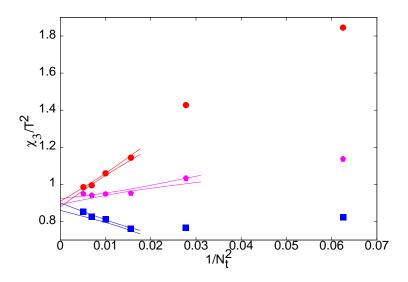
- \spadesuit Investigate larger N_t : 6, 8, 10, 12 and 14.
- \spadesuit Naik action : Improved by O(a) compared to Staggered. Introduction of μ nontrivial but straightforward.

(Naik, NP B 1989; Gavai, NP B '03)

(Gavai & Gupta, PR D '02 and PR D '03)

- \spadesuit Investigate larger N_t : 6, 8, 10, 12 and 14.
- \spadesuit Naik action : Improved by O(a) compared to Staggered. Introduction of μ nontrivial but straightforward. (Naik, NP B 1989; Gavai, NP B '03)

Results at $2T_c$:

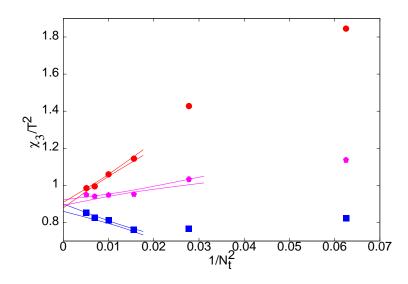


Taking Continuum Limit

(Gavai & Gupta, PR D '02 and PR D '03)

- \spadesuit Investigate larger N_t : 6, 8, 10, 12 and 14.
- \spadesuit Naik action : Improved by O(a) compared to Staggered. Introduction of μ nontrivial but straightforward. (Naik, NP B 1989; Gavai, NP B '03)

Results at $2T_c$:



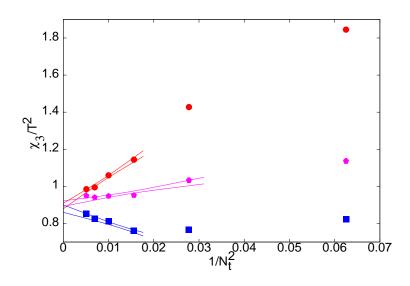
♠ Same results within errors for both fermions.

Taking Continuum Limit

(Gavai & Gupta, PR D '02 and PR D '03)

- \spadesuit Investigate larger N_t : 6, 8, 10, 12 and 14.
- \spadesuit Naik action : Improved by O(a) compared to Staggered. Introduction of μ nontrivial but straightforward. (Naik, NP B 1989; Gavai, NP B '03)

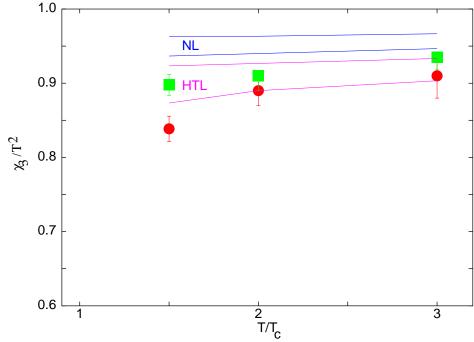
Results at $2T_c$:



- ♠ Same results within errors for both fermions.
- \diamondsuit Milder a^2 -dependence for Naik fermions.

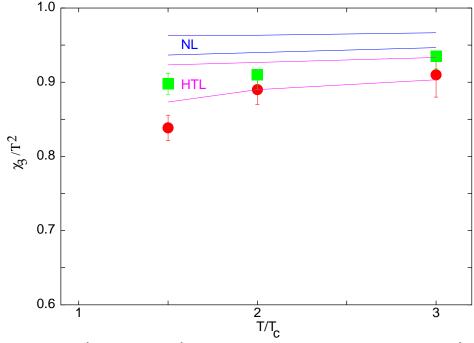
The continuum susceptibility vs. T therefore is :

The continuum susceptibility vs. T therefore is :



Naik action (Squares) and Staggered action (circles)

The continuum susceptibility vs. T therefore is :



Naik action (Squares) and Staggered action (circles)

♥ Also reproduced in dimensional reduction (1 free parameter). Vuorinen, PR D '03.

ullet Fluctuation-Dissipation Theorem \longrightarrow Production of Strange quark-antiquark pair \sim imaginary part of generalized strange quark susceptibility.

ullet Fluctuation-Dissipation Theorem \longrightarrow Production of Strange quark-antiquark pair \sim imaginary part of generalized strange quark susceptibility.

 Kramers - Krönig relation can be used to relate it to the real part of the susceptibility, which we obtain from lattice QCD simulations.

• Fluctuation-Dissipation Theorem \longrightarrow Production of Strange quark-antiquark pair \sim imaginary part of generalized strange quark susceptibility.

• Kramers - Krönig relation can be used to relate it to the real part of the susceptibility, which we obtain from lattice QCD simulations.

• Finally, make a relaxation time approximation ($\omega \tau \gg 1$) \rightsquigarrow ratio of real parts is the same as the ratio of imaginary parts.

ullet Fluctuation-Dissipation Theorem \longrightarrow Production of Strange quark-antiquark pair \sim imaginary part of generalized strange quark susceptibility.

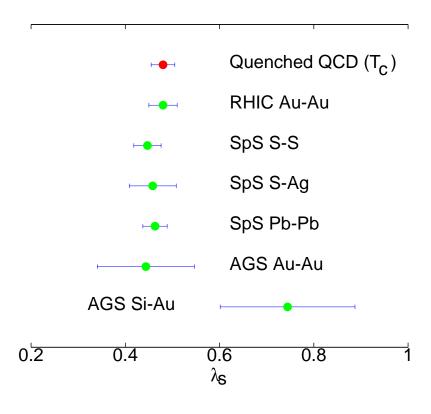
• Kramers - Krönig relation can be used to relate it to the real part of the susceptibility, which we obtain from lattice QCD simulations.

• Finally, make a relaxation time approximation ($\omega \tau \gg 1$) \rightsquigarrow ratio of real parts is the same as the ratio of imaginary parts.

• Using our continuum QNS, ratio χ_s/χ_u can be obtained.

We use $m/T_c=0.03$ for u,d and $m/T_c=1$ for s quark; At each T, ratio of χ 's $\qquad \rightarrow \qquad \lambda_s(T).$ Extrapolate it to $T_c.$

We use $m/T_c=0.03$ for u,d and $m/T_c=1$ for s quark; At each T, ratio of χ 's $\qquad \rightarrow \qquad \lambda_s(T).$ Extrapolate it to $T_c.$

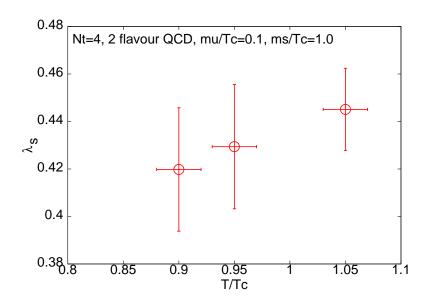


• Quenched approximation – Expect a shift of 5-10 % in full QCD.

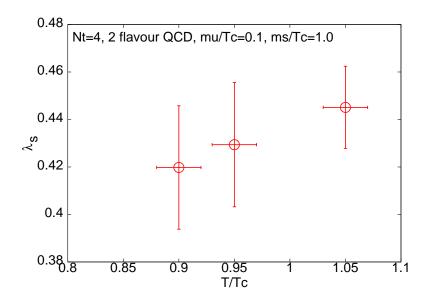
- Quenched approximation Expect a shift of 5-10 % in full QCD.
- ullet Extrapolation to T_c Straightforward but better to do it for full QCD

- Quenched approximation Expect a shift of 5-10 % in full QCD.
- ullet Extrapolation to T_c Straightforward but better to do it for full QCD .
- Results for 2-flavour QCD (Gavai & Gupta work in progress):

- Quenched approximation Expect a shift of 5-10 % in full QCD.
- ullet Extrapolation to T_c Straightforward but better to do it for full QCD .
- Results for 2-flavour QCD (Gavai & Gupta work in progress):



- Quenched approximation Expect a shift of 5-10 % in full QCD.
- ullet Extrapolation to T_c Straightforward but better to do it for full QCD .
- Results for 2-flavour QCD (Gavai & Gupta work in progress):



- \clubsuit Large finite volume effects below T_c
- \clubsuit Up to 12^3 Lattices used.
- —Being extended to 24^3 Lattices.
- \clubsuit Strong dependence on m_s expected.
- \clubsuit Large finite a effects.

 \bullet At SPS and RHIC, $\mu_{\rm B} \neq 0$; But observed λ_s is insensitive to it.

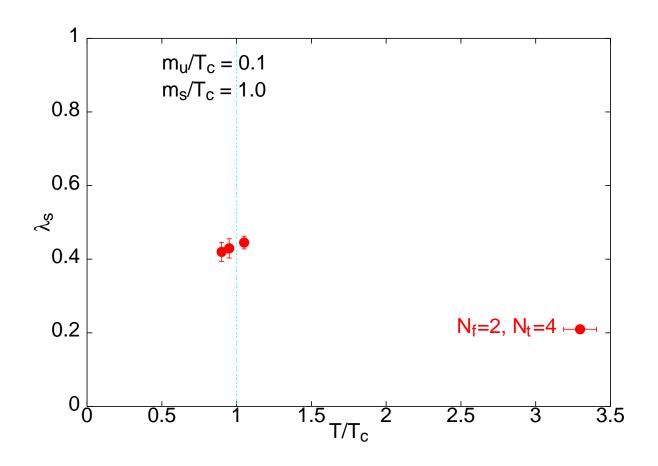
- ullet At SPS and RHIC, $\mu_{\mathrm{B}} \neq 0$; But observed λ_s is insensitive to it. .
 - Theoretically, Screening mass- Susceptibility correlation and μ -dependence results of QCD-TARO on screening masses too suggest such an insensitivity.

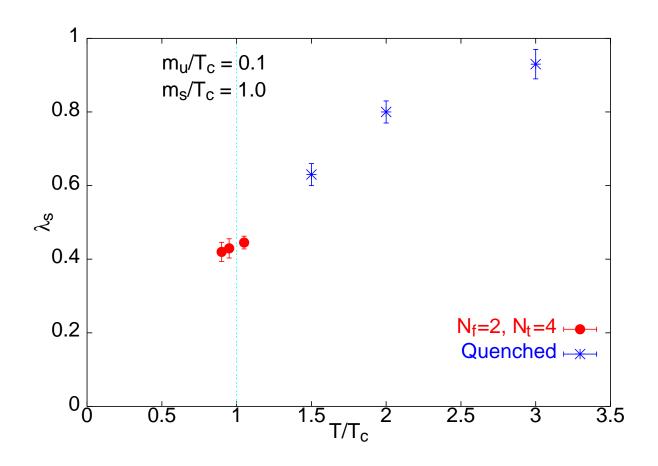
- ullet At SPS and RHIC, $\mu_{\rm B} \neq 0$; But observed λ_s is insensitive to it. .
 - Theoretically, Screening mass- Susceptibility correlation and μ -dependence results of QCD-TARO on screening masses too suggest such an insensitivity.
 - Needs to be checked explicitly.

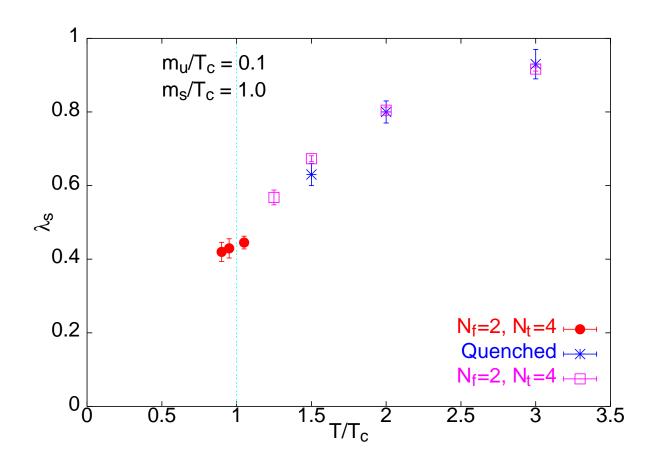
- ullet At SPS and RHIC, $\mu_{\rm B} \neq 0$; But observed λ_s is insensitive to it. .
 - Theoretically, Screening mass- Susceptibility correlation and μ -dependence results of QCD-TARO on screening masses too suggest such an insensitivity.
 - Needs to be checked explicitly.
- Assumed: characteristic time scale of plasma are far from the energy scales of strange or light quark production.

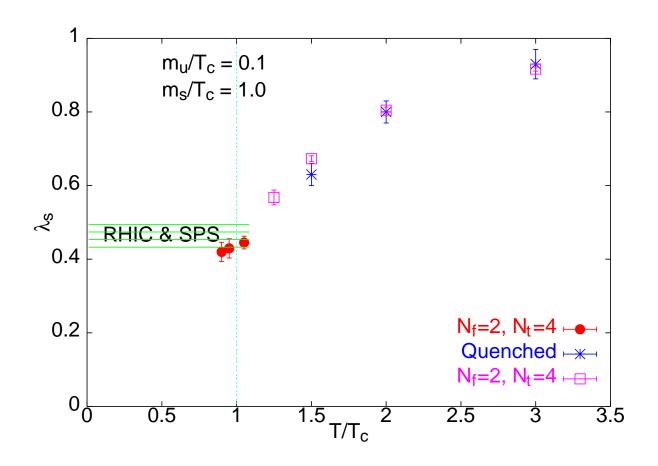
- ullet At SPS and RHIC, $\mu_{\rm B} \neq 0$; But observed λ_s is insensitive to it. .
 - Theoretically, Screening mass- Susceptibility correlation and μ -dependence results of QCD-TARO on screening masses too suggest such an insensitivity.
 - Needs to be checked explicitly.
- Assumed: characteristic time scale of plasma are far from the energy scales of strange or light quark production.
 - Observation of spikes in photon production may falsify this.

- At SPS and RHIC, $\mu_{\rm B} \neq 0$; But observed λ_s is insensitive to it. .
 - Theoretically, Screening mass- Susceptibility correlation and μ -dependence results of QCD-TARO on screening masses too suggest such an insensitivity.
 - Needs to be checked explicitly.
- Assumed: characteristic time scale of plasma are far from the energy scales of strange or light quark production.
 - Observation of spikes in photon production may falsify this.
- Assumed: Chemical equilibration in the plasma.









- Quark number susceptibilities RHIC signal physics.
- They offer an independent check on resummed perturbation theory which seems to do well.

- Quark number susceptibilities RHIC signal physics.
- They offer an independent check on resummed perturbation theory which seems to do well.
- Continuum limit of χ_{uu} yields λ_s in agreement with RHIC and SPS results after extrapolation to T_c . First full QCD investigations show interesting trend.
- Higher susceptibilities up to 8th order computed. Interesting results on the QCD phase diagram soon.