Low Mass Dimuon Production in Proton-Nucleus Collisions with the NA60 Apparatus

Outline:

- Introduction

Motivation
NA60 apparatus; setup in 2002; data reconstruction and selection
Detector performance: Phase space coverage
Dimuon mass resolution and
Signal-to-background ratio

- Monte Carlo generation and comparison to data
- Extraction of physics results and discussion

Elementary (pp) production cross-sections of η, ρ, ω and ϕ
Nuclear dependence of the $\eta, \rho / \omega$ and ϕ production cross-sections

Motivation

The study of low mass dilepton production in nuclear collisions provides a window of opportunity to learn about several interesting physics topics:

- Medium effects on the mass and width of the ρ vector meson (less for ω and ϕ)
\rightarrow which might be due to the approach to chiral symmetry restoration
- Thermal virtual photon production from the earliest stages of the collision \rightarrow which would constitute direct evidence of a quark-gluon-plasma phase
- Strangeness enhancement, through the ϕ meson
\rightarrow link to general strangeness enhancement in deconfined phase
Such "new physics" studies must be built on top of a solid understanding of low mass dilepton production in proton-nucleus collisions, which provide a reference baseline with respect to which the heavy-ion specific phenomena can be extracted.

NA60 is presently taking a high statistics proton-nucleus data sample with seven different nuclear targets, at 400 and 158 GeV . The present talk reports on results obtained from a much smaller data sample collected in 2002.

The NA60 Apparatus during the 2002 Proton Run

The muon spectrometer:

- Hadron absorber ($13+7 \lambda_{1}$)
- 4+4 MWPCs with 3 individual planes each (rotated by 60°)
- 4 trigger hodoscopes
- Toroidal magnet

The vertex region:

provides:

- Tracking of charged particles
- Target identification
- Improved dimuon kinematics via track "matching"
provides:
- Muon identification
- Highly selective dimuon trigger
- Track reconstruction of two muons however: affected by multiple scattering and energy loss induced by the hadron absorber

Strip segmentation adapted to the highly inhomogeneous particle production across the sensor surface.

Data Taking, Reconstruction and Event Selection

1) Data Taking

- 400 GeV proton beam incident on Be , In and Pb targets ($2 \%, 0.9 \%$ and $1.2 \% \lambda_{\text {Int }}$ respectively)
- All targets were simultaneously placed in the beam to reduce systematic effects in the extraction of the nuclear dependence of the production cross-sections
- During 4 days in 2002: 600000 dimuons collected (at "low" beam intensity: 1-3 10^{8} protons/burst)

2) Data Reconstruction and Event Selection

- Reconstruct tracks in the muon spectrometer and build dimuons of all charge combinations
- Reconstruct the charged particle tracks in the vertex telescope
- Reconstruct the primary interaction vertex
- Select events with only one reconstructed vertex in the target region to reject pile-up
- Match the two muons to vertex telescope tracks, in coordinate and momentum space

Like Sign (LS) dimuons:
used to evaluate the "combinatorial background"

Opposite Sign (OS) dimuons: used for the physics data analysis from π, K decays through a mixed event technique

- Select matched dimuons in a well defined phase space window
- After the full reconstruction, vertex selection and phase space cuts we are left with ~ 15000 OS dimuons

Target Identification

- Z-vertex resolution ~600-900 $\mu \mathrm{m}$ depending on the target position
\Rightarrow allows us to clearly separate the individual targets (2 mm thick, 8 mm interspacing)
- Vertexing algorithm tuned through MC simulation
\Rightarrow in only $\sim 2 \%$ of all generated events the collision vertex is reconstructed in a wrong target

The use of 3 target materials with very different mass numbers ($\mathrm{Be}, \mathrm{In}, \mathrm{Pb}$) allows us to extract the nuclear dependence of the particle production cross-sections.

Phase Space Window \& Acceptances

> Dimuon phase space $3.3<\mathrm{y}_{\mathrm{lab}}<4.2$ $\left|\cos \theta_{\mathrm{cs}}\right|<0.5$
> $\mathrm{~m}_{\mathrm{T}}>0.4+0.7(\mathrm{y}-4.2)^{2} \mathrm{GeV}$

- The phase space window was tuned to keep most of the dimuons collected in the ω and ϕ mass windows.
- Apart from the dimuon selection cuts ($\mathrm{y}_{\mathrm{lab}}, \cos \theta$ and m_{T}) we also apply an angular single muon cut to stay away from the "beam-hole" of the strip sensors: $\eta(\mu)<4.2$
- Acceptances: $\rho \sim 3.3 \%, \omega \sim 3.6 \%, \phi \sim 6.5 \%$ (the exact value depending on the target position)
- The dipole magnetic field in the vertex region improves significantly the acceptance for low mass and low p_{T} opposite sign dimuons

Mass Resolution and Signal / Background

- Measuring the muons before they suffer multiple scattering and energy loss in the hadron absorber, thanks to our silicon vertex telescope, allows us to achieve a mass resolution on the ω and ϕ resonances of around 30 MeV . That is exactly the value expected from our MC simulations.
- Through the matching procedure the signal to background ratio improves by a factor of 4 .

MC Generation of Light Meson Decays

- The $\eta, \eta^{\prime}, \rho, \omega$ and ϕ mesons were generated with
- p_{T} distributions: $\left.\frac{1}{p_{T}} \cdot \frac{d N}{d p_{T}}=\frac{1}{m_{T}} \cdot \frac{d N}{d m_{T}}=m_{T} K_{1}\left(\frac{m_{T}}{T}\right)\right]$
- y distributions:

$$
\frac{d N}{d y} \propto \frac{1}{\cosh ^{2}\left(a\left(y-y^{*}\right)\right)}
$$

the y width scales with $y_{\max }=\ln (\sqrt{ } / \mathrm{m})$

- mass distributions: Gounaris-Sakurai parameterisation

$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{y}{\circ} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	η	$\mu^{+} \mu^{-}$
	P	$\mu^{+} \mu^{-}$
	ω	$\mu^{+} \mu^{-}$
	¢	$\mu^{+} \mu^{-}$

- ρ mass line shape modified to include phase space effects

$$
\frac{\mathrm{d} R(M)}{\mathrm{d} M}=\frac{\alpha^{2} m_{\rho}^{4}}{3(2 \pi)^{4}} \frac{\left(1-\frac{4 m_{\pi}^{2}}{M^{2}}\right)^{3 / 2} \sqrt{1-\frac{4 m_{\mu}^{2}}{M^{2}}}\left(1+\frac{2 m_{\mu}^{2}}{M^{2}}\right)}{\left(M^{2}-m_{\rho}^{2}\right)^{2}+M^{2} \Gamma_{\mathrm{tot}}^{2}}
$$

- Dimuon mass distributions of Dalitz decays:

Kroll-Wada form multiplied with transition form factors (Lepton-G data)

- Branching ratios from PDG04;
we use $\omega \rightarrow$ ee instead of $\omega \rightarrow \mu \mu$ because it is known more accurately ("lepton universality")

MC Simulation of Hard Processes

Events generated with Pythia 6.2

Open Charm ($D \bar{D}$): semi-muonic decays of two D mesons

- Generation done with CTEQ6L PDFs
- Branching Ratios taken from PDG04
- Normalisation:
$\sigma(\mathrm{c} \overline{\mathrm{c}}) \sim 20 \mu \mathrm{~b}$ (from a compilation of charm measurements) Linear A-dependence, including nuclear effects on the PDFs

Drell-Yan (DY)

- Generated with MRS-A Low Q^{2} to obtain events with low masses
- K factor $=1.4$ (to reproduce NA3 data: $\mathrm{p}-\mathrm{Pt}$ at 400 GeV) $\sigma(\mathrm{DY})_{\mathrm{pp}}=17 \mathrm{nb}, \sigma(\mathrm{DY})_{\mathrm{pn}}=15 \mathrm{nb}$
- Linear scaling with the number of nucleons:
 $\sigma(\mathrm{DY})_{\mathrm{p}-\mathrm{A}}=\mathrm{Z} \cdot \sigma_{\mathrm{pp}}+(\mathrm{A}-\mathrm{Z}) \cdot \sigma_{\mathrm{pn}}$

Reconstruction:

- All generated muon pairs are immersed in an underlying hadronic event, using VENUS, to correctly reproduce the reconstruction efficiencies.
- Particle tracking through the apparatus done via GEANT.
- The reconstruction was done with the same settings as the real data
\rightarrow gives particle acceptances and detector smearing effects.

Reconstructed MC vs. Data

- Before extracting physics results from the data using our MC simulations, we must ensure that the data's kinematical distributions are reproduced.
- Among other variables, we compare the rapidity, the decay angle and the transverse momentum distributions of various mass windows, where the comparison is performed on the raw data level.
- Within the statistics available in the ω and ϕ mass windows we see good agreement between reconstructed MC and data.

rapidity:

Fitting the OS Dimuon Mass Spectrum

- Background fixed by a mixed event technique using single muons from the measured like-sign dimuons.
- Open charm and Drell-Yan production cross-sections fixed from previous measurements (describes nicely the region between the ϕ and the J / ψ peaks).
- The ω and ϕ cross-sections can be extracted from the resonance peaks.
- The good mass resolution allows us to extract the ρ normalisation independently of the ω.
- The η cross-section is essentially determined from the mass region below 0.45 GeV , where its Dalitz decay is the dominating process (the η 2-body peak does not have enough statistics to influence the fit).
- From a simultaneous fit of the 3 data samples (Be, In and Pb), we can extract the dependence of the $\eta, \rho / \omega$ and ϕ cross-sections with A.

$$
\sigma_{p A}=\sigma_{0} \cdot A^{\alpha}
$$

$\sum_{i=B e, I n, P b} \frac{\mathrm{~d} N_{i}^{O S}}{\mathrm{~d} M}=\sum_{i=B e, I n, P b} \frac{\mathrm{~d} N_{i}^{B G}}{\mathrm{~d} M}+\mathcal{L}_{i}\left(\frac{\mathrm{~d} \sigma_{p A_{i}}^{D \bar{D}}}{\mathrm{~d} M}+\right.$
$B^{\eta_{D}} \sigma_{0}^{\eta} \mathrm{A}_{i}^{\alpha^{\eta}} \frac{\mathrm{d} N_{i}^{\eta_{D}}}{\mathrm{~d} M}+B^{\eta_{D}^{\prime}} \sigma_{0}^{\eta^{\prime}} \mathrm{A}_{i}^{\alpha^{\eta^{\prime}}} \frac{\mathrm{d} N_{i}^{\eta_{D}^{\prime}}}{\mathrm{d} M}+B^{\omega_{D}} \sigma_{0}^{\omega} \mathrm{A}_{i}^{\alpha^{\omega}} \frac{\mathrm{d} N_{i}^{\omega_{D}}}{\mathrm{~d} M}+$
$\left.B^{\eta} \sigma_{0}^{\eta} \mathrm{A}_{i}^{\alpha^{\eta}} \frac{\mathrm{d} N_{i}^{\eta}}{\mathrm{d} M}+B^{\rho} \sigma_{0}^{\rho} \mathrm{A}_{i}^{\alpha^{\rho}} \frac{\mathrm{d} N_{i}^{\rho}}{\mathrm{d} M}+B^{\omega} \sigma_{0}^{\omega} \mathrm{A}_{i}^{\alpha^{\omega}} \frac{\mathrm{d} N_{i}^{\omega}}{\mathrm{d} M}+B^{\phi} \sigma_{0}^{\phi} \mathrm{A}_{i}^{\alpha^{\phi}} \frac{\mathrm{d} N_{i}^{\phi}}{\mathrm{d} M}\right)$

- Fit parameters: $\sigma_{0}{ }^{\eta}, \sigma_{0}{ }^{\rho}, \sigma_{0}{ }^{\omega}, \sigma_{0}{ }^{\phi}$,

$$
\alpha^{\eta}, \alpha^{\omega}, \alpha^{\phi}
$$

- Assuming: $\alpha^{\rho}=\alpha^{\omega} ; \alpha^{\eta}=\alpha^{\eta}$ and $\sigma^{\eta^{\prime}}=0.15 \cdot \sigma^{\eta}$ [Eur. Phys. J. C4 (1998) 231]
- The fit is performed in the mass window $0.2-1.1 \mathrm{GeV}$.

Fitting $\mathrm{p}-\mathrm{Be}, \mathrm{p}-\mathrm{In}$ and $\mathrm{p}-\mathrm{Pb}$ simultaneously

- The fitting procedure (7 free parameters) describes the low mass dimuon spectra of the three data samples without additional sources (like in HELIOS-1 and CERES).
- From these fits we can derive the number of ω 's and ϕ 's present in our data samples:
- The ϕ peak increases relatively to the ω, from $\mathrm{p}-\mathrm{Be}$ to $\mathrm{p}-\mathrm{Pb}$.

	N^{ω}	N^{ϕ}
Be	966	575
\ln	676	464
Pb	660	511

Results I: Nuclear dependence of production cross-sections

The fit gives the nuclear dependence of the η, ω and ϕ cross-sections:

$$
\sigma_{p A}=\sigma_{0} \cdot A^{\alpha}
$$

- The η and ϕ production cross-sections scale faster with A than the ω.

α^{η}	0.93 ± 0.02
α^{ω}	0.82 ± 0.01
α^{ϕ}	0.91 ± 0.02

(statistical error only)
This should be kept in mind when interpreting data collected in heavy ion collisions.

- No previous measurements are worth comparing to, except with HERA-B, which measured

$$
\alpha(\phi)=1.01 \pm 0.01 \pm 0.06
$$

in $p-C, T i, W$ at 920 GeV , in the $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$decay channel
Phase space domain:

$$
\begin{aligned}
& 0.5<\mathrm{p}_{\mathrm{T}}^{2}<12.1(\mathrm{GeV} / \mathrm{c})^{2} \\
& 2.95<\mathrm{y}_{\text {lab }}<4.2 \\
& \text { (i.e. }-0.85<\mathrm{y}^{*}<0.4 \text {) }
\end{aligned}
$$

note that α decreases with X_{F} and increases with p_{T}

Results II: Elementary 4π production cross-sections

We have extracted the absolute production cross-sections of the η, ρ, ω and ϕ mesons in elementary p-nucleon collisions at $\mathrm{E}_{\mathrm{lab}}=400 \mathrm{GeV}$.
The extrapolation to 4π requires assuming certain kinematical distributions outside of our phase space window. For the decay angle distributions of the 2-body decays we have two reasonable options: $1+\cos ^{2} \theta$ or uniform

Looking at the results:

$\sigma_{0}[\mathrm{mb}]$	$1+\cos ^{2} \theta$	uniform
ρ	11.6 ± 1.0	8.9 ± 0.7
ω	10.5 ± 0.6	8.0 ± 0.5
ϕ	0.53 ± 0.05	0.40 ± 0.03
η	9.5 ± 0.6	10.2 ± 0.6
(statistical errors only)		

(a) $\left(\sigma_{0}^{\rho} / \sigma_{0}^{\omega}\right)_{\mu \mu}=1.1 \pm 0.1$
(b) $\left(\sigma_{0}^{\rho}+\sigma_{0}^{\omega}\right)_{\mu \mu}=\left\{\begin{array}{l}22.1 \pm 1.2 \mathrm{mb} \text { for } 1+\cos ^{2} \theta \\ 16.9 \pm 0.9 \mathrm{mb} \text { for uniform }\end{array}\right.$
(c) $\left(\frac{\sigma_{0}^{\eta}}{\sigma_{0}^{\rho}+\sigma_{0}^{\omega}}\right)_{\mu \mu}= \begin{cases}0.43 \pm 0.04 & \text { for } 1+\cos ^{2} \theta \\ 0.60 \pm 0.05 & \text { for uniform }\end{cases}$
(statistical errors only)

How do these results compare to previous measurements?

NA27

NA27 measured the elementary η, ρ, ω and ϕ full phase space production cross-sections in pp @ 400 GeV
[Z. Phys. C50 (1991) 405]
Phase space coverage: $x_{F}>0$

HELIOS-1

- HELIOS-1 measured di-electron and dimuon spectra in p-Be @ 450 GeV
[Z. Phys. C68 (1995) 47.]
- The η yield in the dilepton spectra was fixed from the independent $\mathrm{I}^{+} \mathrm{I} \gamma$ measurement

Comparison to NA60:

- similar phase space coverage:

$$
\begin{array}{rlr}
+0.25<\mathrm{y}^{*}<+1.50 & \mathrm{e}^{+} \mathrm{e}^{-} \\
-0.25<\mathrm{y}^{+}<+1.25 & \mu^{+} \mu^{-} \\
-0.75<\cos \theta<0.75 & \\
\mathrm{~m}_{\mathrm{T}}>0.25 \mathrm{GeV} & \mathrm{e}^{+} \mathrm{e}^{-} \\
\mathrm{m}_{\mathrm{T}}>0.4 \mathrm{GeV} & \mu^{+} \mu^{-}
\end{array}
$$

- same mass resolution
- higher background

CERES-TAPS

- CERES-TAPS measured η and ω production in p-Be and $p-A u$ collisions @ 450 GeV
[Eur. Phys. J. C4(1998) 249].
- Phase space coverage: $3.1<y<3.7$
- Published particle ratios (no absolute cross-sections) in their phase space window.

Absolute cross-sections: $\left(\sigma_{0}{ }^{\rho}+\sigma_{0}{ }^{\omega}\right), \sigma_{0}{ }^{\eta}$ and $\sigma_{0}{ }^{\phi}$

To compare our ρ and ω cross-sections with measurements done in independent decay channels, we must take into account the interference effect in our data (\rightarrow overlapping mass; measurement in the same decay channel). HELIOS-1 found in their analysis a negative interference effect, giving a total $\sigma^{\rho / \omega} 15 \%$ smaller than their sum, measured in independent channels, $\sigma^{\rho}+\sigma^{\omega}$.

NA60		
	$1+\cos ^{2} \theta$	uniform
$\sigma_{0}{ }^{\eta} \quad[\mathrm{mb}]$	9.5 ± 0.6	10.2 ± 0.6
$\sigma_{0}{ }^{\rho+\sigma_{0}{ }^{\omega}[\mathrm{mb}]}$	25.4 ± 1.3	19.4 ± 1.0
$\sigma_{0}{ }^{\phi}$	$[\mathrm{mb}]$	0.53 ± 0.05

- The cross-sections $\sigma_{0}{ }^{\rho}+\sigma_{0}{ }^{\omega}$ measured by NA27 and NA60 agree perfectly if the $1+\cos ^{2} \theta$ decay angle distribution is used for NA60's extrapolation to 4π.
- The η cross-sections of NA27 and NA60 also agree very well with $1+\cos ^{2} \theta$.
- The ϕ cross-section measured by NA60 is lower than NA27's, but maybe the NA27 value is slightly overestimated.
- The comparisons of absolute cross-sections indicate that the $1+\cos ^{2} \theta$ decay angle distribution is the more appropriate one.

The $\eta /(\rho+\omega)$ cross-section ratio in p-nucleon collisions

In order to compare apples with apples:

1. Correct the measurements in leptonic decay channels (HELIOS-1 and NA60) for the ρ / ω interference, and use the results obtained with $1+\cos ^{2} \theta$.
2. Extrapolate the HELIOS-1 and CERES-TAPS measurements to elementary p-nucleon collisions (using our α^{η} and $\alpha^{\rho}=\alpha^{\omega}$).
3. Extrapolate the CERES-TAPS measurement to full phase space.

Note: CERES-TAPS assumed $\sigma^{\rho}=\sigma^{\omega}$ for the calculation of $\eta /(\rho+\omega)$.
\rightarrow The NA60 value agrees with these previous measurements.

The open (closed) symbols show the measurements before (after) extrapolating to 4π and p-nucleon collisions

Summary and Outlook

- Although the proton 2002 run had limited statistics, we achieved
- a good mass resolution ($\sim 30 \mathrm{MeV}$ at 1 GeV)
- a good signal-to-background ratio
- This performance allowed us to
- clearly separate the ω and ϕ peaks and
- estimate the ρ normalisation independently of the ω
- Having 3 target materials with very different mass numbers, we extracted the nuclear dependence of the production cross-sections for the η, ω and ϕ mesons.
- The extracted elementary proton-nucleon 4π cross-sections for the η, ρ, ω and ϕ mesons are in good agreement with existing measurements (NA27, HELIOS-1 and CERES)
- The observed faster scaling of the η and ϕ mesons with respect to the ω should be taken into account when interpreting the heavy-ion data.

Outlook:

NA60 is currently collecting a large data sample with a proton beam at 400 GeV incident on 7 nuclear targets ($\mathrm{Be}, \mathrm{Al}, \mathrm{Cu}, \mathrm{In}, \mathrm{W}, \mathrm{Pb}, \mathrm{U}$) to collect further reference data.

