Direct-Photon Production from SPS to RHIC Energies

Klaus Reygers University of Münster

for the PHENIX collaboration

Why Direct Photons? (I)

Direct Photons

- Pragmatic Definition: Photons not coming from hadron decays
- Difficult measurement: Large Background from
 - $\pi^0 \longrightarrow \gamma + \gamma$
 - $\eta \rightarrow \gamma + \gamma$

p+p:

- Late 1970's: Direct Photons suggested presence of pointlike charged objects within hadrons
- Test of QCD
- Focus now on constraining gluon distribution functions
 - Quark-Gluon Compton scattering contributes at leading order (LO)
 - This is in contrast to Deep Inelastic Scattering and Drell-Yan where gluon is involved only at NLO

Why Direct Photons? (II)

Nucleus+Nucleus collisions

- Photons don't interact with the fireball and carry information about early stage of the A+A collision
- QGP potentially detectable via thermal photon radiation
- Thermal photons dominantly from early hot QGP phase:

 initial temperature
- Direct Photons at high p_{T}
 - Allow test of $N_{\rm coll}$ scaling for hard processes
 - Important for interpretation of high p_{T} hadron suppression at RHIC

Direct Photon Production in p+p: Hard Scattering

LO

NLO

Processes in perturbative QCD

- Compton: q + g → γ + q
 Annihilation: q + q → γ + g
- Bremsstrahlung
- Typically 20-30% uncertainty in pQCD calculations related to choice of scales

Evidence for k_T Broadening

E706, hep-ex/0407011

Systematic pattern of deviation between NLO pQCD and data

- Data above pQCD
- Especially at low \sqrt{s}

Possible explanation: k_T broadening (which can be produced by multiple softgluon emission)

Photon Sources in A+A

Schematic Photon Spectrum in A+A

 Advantage in central A+A at RHIC:
 Decay photon background strongly reduced due to to π⁰ suppression

Realistic Calculation

Turbide, Rapp, Gale, Phys. Rev. C 69 (014902), 2004

■ Window for thermal photons from QGP in this calculation: $p_T = 1 - 3 \text{ GeV}/c$

Thermal Photons as QGP Signature

Conventional wisdom ca 1985:

- QGP has lots of quarks flying around
- QGP radiates more than HG at the same temperature (false!)
- Lots of thermal radiation is evidence for QGP
- Current conventional wisdom:
 - QGP has more d.o.f. than HG and therefore lower temperature at the same energy density ε (ε ~ g·T⁴)
 - At the same energy density QGP radiates less than HG
 - Lack of radiation is evidence for QGP!

See talk by P. Stankus at CTEQ summer school 2004: http://www.cteq.org

Thermal Photon Rates in QGP

State-of-the-art result from Arnold, Moore, and Yaffe (including Landau-Pomeranchuk-Migdal destructive interference effect)

- Final thermal photon spectrum: QGP and HG photon rates convoluted with space-time evolution of the reaction
- Thermal photon rate in QGP
 - Hard-thermal-loop resummation
 - Effective in-medium Quark and Gluon propagators
 - Processes
 - $\rightarrow 2 \downarrow$
- Quark-Gluon-Compton scattering
- Quark-antiquark annihilation
- Annihilation with Scattering (AWS)
- Bremsstrahlung

Photon Rates in HG and QGP

Steffen and Thoma, Phys. Lett. B 510, 98 (2001)

- Typical processes for direct photon production in hot hadron gas (HHG)
 - $\pi + \rho \rightarrow \pi + \gamma$
 - $\pi + N \rightarrow N + \gamma$

Hadron gas at T=200 MeV radiates more than QGP at the same temperature

Measurement of Direct Photons

- Measure p_T spectrum of π^0 and η mesons with high accuracy
- Calculate number of decay photon per π^0
 - Usually with Monte-Carlo
 - $m_{\rm T}$ scaling for (η), η ', ω , ...
- Get clean inclusive photon sample
 - Charged background subtraction

Finally:

Subtract decay background from inclusive photon spectrum

Handy formula:

$$\frac{d\sigma}{dp_{\rm T}} \propto 1/p_{\rm T}^{n}$$
$$\Rightarrow \frac{\gamma_{\pi^{0}}^{\rm decay}}{\pi^{0}} = \frac{2}{n-1} \approx 0.28 \text{ at RHIC}$$

$$\gamma_{\text{direct}} = \gamma_{\text{inclusive}} - \gamma_{\text{decay}}$$

Why this is Difficult

Systematic errors (e.g. energy scale non-linearity) partially cancel in this ratio

$$\gamma_{direct} = (1 - \frac{1}{R}) \cdot \gamma_{measured}$$

WA98 Result

20% direct photon
 excess at high p_T in
 central Pb+Pb collisions
 at CERN SPS

No signal within errors in peripheral collisions

WA98 Direct Photon Spectrum

WA98 Interpretation I: pQCD with Nuclear *k*_T Broadening ?

Dumitru et al., Phys. Rev. C 64, 054909 (2001)

- High p_T part of the spectrum explained by pQCD + nuclear k_T broadening
 - p+p: $\langle k_T^2 \rangle \approx 1.4 \text{ GeV}^2$

• A+A:
$$\langle k_T^2 \rangle \approx 2.4 \text{ GeV}^2$$

Intermediate p_T range cannot be explained regardless of amount of k_T

WA98 Interpretation II: T or k_T ?

- QGP + HG rates convoluted with simple fireball model plus pQCD hard photons
- Data described with initial temperature T_i =205 MeV + some nuclear k_T broadening (Cronin -effect)
- Data also described without k_T broadening but with high initial temperature (T_i=270 MeV)
- Other Models (see e.g. Huovinen et al., Nucl. Phys. A 650 (227) 1999) explain data without assuming QGP

Turbide, Rapp, Gale, Phys. Rev. C 69 (014902), 2004

WA98: New low-*p*_T Points

 Two-photon correlations observed and attributed to Bose-Einstein correlations of direct photons

- Correlation strength used to extract direct photon signal at low p_T
- New points not described by current models

WA98, Phys. Rev. Lett. 93 (022301), 2004

Direct Photons at RHIC: p+p

Data show good agreement with NLO pQCD calculation

Important baseline for interpretation of Au+Au results

Direct Photons at RHIC: Au+Au

- Strong direct photon signal in central Au+Au
- Direct Photons at high p_T follow N_{coll} scaling
- Errors currently too large for statement about thermal photon signal

Centrality Dependence

 N_{coll} scaling holds for all centrality classes (within errors)

Beyond simple N_{coll} Scaling: k_T Effects and Photons from Quark-Jets

Effect of k_{T} strongest where thermal QGP photons are expected

Interaction of fast quarks with QGP significant photon source for $p_T < 6 \text{ GeV}/c$ (Jet-Photons: $\mathbf{q}_{hard} + \overline{\mathbf{q}}_{QGP} \rightarrow \gamma + \mathbf{g}$ and $\mathbf{q}_{hard} + \mathbf{g}_{QGP} \rightarrow \gamma + \mathbf{q}$)

What about Photon Bremsstrahlung in A+A?

Bremsstrahlung contribution large

Modification of Bremsstrahlung contribution expected in A+A

Modification of Bremsstrahlung Contribution in A+A

Zakharov, hep-ph/0405101

Jeon, Jalilian-Marian, Sarcevic, Nucl. Phys. A 715, 795 (2003)

Quark energy loss in QGP reduces bremsstrahlung contribution in A+A

- However, this is compensated by induced photon bremsstrahlung in QGP (according to Zakharov)
- Net result: direct photon $R_{AA} \ge 1$ at high p_T

Model-independent Representation of π^0 Suppression

Standard representation relies on assumption about scaling of hard scattering processes in A+A:

$$R_{AA}^{\pi^{0}} = \frac{\mathrm{d}^{2} N / \mathrm{d} p_{T} \mathrm{d} y \big|_{A+A}}{\left\langle N_{\mathrm{coll}} \right\rangle / \sigma_{\mathrm{inel}}^{\mathrm{pp}} \times \mathrm{d}^{2} \sigma / \mathrm{d} p_{T} \mathrm{d} y \big|_{p+p}}$$

PHENIX result on high p_T direct photon production confirms this assumption

However, it seems natural to avoid model assumptions and to use high p_T direct photons as a direct measure of the number of hard scatterings in A+A Define:

$$G_{AA} = \frac{(\gamma_{direct} / \pi^0)_{p+p}}{(\gamma_{direct} / \pi^0)_{A+A}}$$

If direct photons exactly follow N_{coll} scaling then

$$\boldsymbol{G}_{\mathrm{AA}} = \boldsymbol{R}_{\mathrm{AA}}^{\pi^0}$$

γ_{direct}/π^0

Blue points are another representation of the PHENIX preliminary double ratio:

$$\frac{(\gamma / \pi^{0})_{\text{measured}}}{(\gamma / \pi^{0})_{\text{decay}}} - 1 \times 0.3$$

$$(\gamma / \pi^{0})_{\text{decay}}$$

$$(\gamma / \pi^{0})_{\text{decay}}$$

$$above \rho_{T} = 3 \text{ GeV/c}$$

G_{AA} in central Au+Au at RHIC

G_{AA} agrees well with the standard R_{AA} representation of the neutral pion suppression

• G_{AA} consistent with 1 at high p_T (p_T >3 GeV/c)

Moderate π^0 suppression also consistent with data

Summary

Pb+Pb at CERN SPS:

Direct photon signal consistent with QGP scenario, however, models without QGP are also able to explain the data

Au+Au at RHIC:

Direct photon signal observed at high $p_{\rm T}$ confirms $N_{\rm coll}$ scaling for hard processes and supports explanation of pion suppression as final state effect

Backup Slides

R_{AA} for Different Energies

p+p Direct Photons: With and Without Isolation Cut

- No correction for direct photon loss due to isolation cut
- Nevertheless, no difference between cross section with and without isolation cut

WA98 Interpretation: QGP or HG ?

Huovinen et al., Nucl. Phys. A 650 (227) 1999

