A Bright Future

Status and Perspectives of Electromagnetic Probes

Axel Drees,Stony Brook UniversityHard Probes 2004Ericeria, Portugal, Nov. 10 2004

- Hunt for direct photons
 - o **Upper limits on thermal photons at SPS**
 - o **Prompted photons at RHIC**
- Dilepton measurements at CERN
 - o 1st and 2nd generation experiments
 - o First results from CERES-2
 - o New era: NA60 sneak preview
- Other dilepton experiments
 - o At 1 to 10 GeV beam energies
 - o Future dilepton measurements at RHIC
- Outlook

Experimental overview Many transparencies from: C.Gale I.Tserruya CERES H.Appelshäuser NA60 R.Shahoyan G.Usia H.Wöhri PHENIX K.Reygers K.Ozawa:

Direct Photon Search

- Direct photons
 - From initial hard scattering "prompt"
 - From medium: "thermal", "pre-equilibrium", other effects
- Competes with large hadron decay background
 - Thermal component $\leq 10\%$ and limited to low p_T
 - Requires careful modeling of decay contribution

Search for Direct "Thermal" Photons at the SPS

- 1st and 2nd generation experiments gave upper limits
 - With oxygen and sulfur beams
 - Measurement limited by systematic errors on data analysis & η production

Experime nt	published	У	p _T (GeV/c)	system	Upper limit
HELIOS 2	Z.Phys. C46 (90)	1.0-1.9	0.1 – 1.5	p-W, O-W, S-W	13%
WA80	Z.Phys. C51 (91)	1.5-2.1	0.4 - 2.8	O-Au	15%
WA98	PRL (96)	2.1-2.9	0.5 - 2.5	S-Au	12.5%
CERES	Z.Phys. C71 (96)	2.1–2.65	0.4 - 2.0	S-Au	14%

~13% upper limits on direct photon production from central O and S beams

First Direct Photon Measurement in Heavy Ion Collisions

- WA98 data from Pb-Pb collisions
 - Published 2000
 - 14 years after start of SPS program
- Clear signal above 2 GeV/c
 - Access beyond prompt component
 - Consistent T_{init}~200-270 MeV
 - Remains ambiguous
- Upper limits below 1.5 GeV/c
 - Systematic errors at low p_T remain prohibitive

Data: WA98, PRL 85 (2000) 3595 Theory: Turbide, Rapp & Gale PRC (2004)

First hint of direct photons from Pb-Au

Theoretical Expectation for RHIC

Window for thermal radiation: 0.5 to 2.5 GeV

Direct Photon Search in the RHIC Era

Shown by K.Reygers

PHENIX Direct Photons at RHIC

Strong direct photon signal in central Au+Au

Shown by K.Reygers

Continuum Lepton-Pair Physics

Modifications due to QCD phase transition

Continuum sensitive to chiral symmetry restoration and thermal radiation

Dedicated Dilepton Experiments at CERN SPS

Experiment		System	Mass range	Publications
HELIOS-1	μμ ее	p-Be (86)	low mass	Z.Phys. C68 (1995) 64
HELIOS-3	μμ	p-W,S-W (92)	low & Intermediate	E.Phys.J. C13(2000)433
CERES	ee	pBe, pAu, SAu (92/93) Pb-Au (95) Pb-Au (96)	low mass	PRL (1995) 1272 Phys.Lett. B (1998) 405 Nucl.Phys. A661 (1999) 23
CERES-2	ee	Pb-Au 40 GeV (99) Pb-Au 158 GeV (2000)	low mass	PRL 91 (2002) 42301 preliminary data 2004
NA38/ NA50	μμ	p-A, S-Cu, S-U, Pb-Pb	low (high m _T) intermediate	E.Phys.J. C13 (2000) 69 E.Phys.J. C14 (2000) 443
NA60	μμ	p-A, In-In (2002,2003) p-A (2004)	>2m _µ	preliminary data 2004 data taking

Pioneering Dilepton Results form CERN

• Discovery of low mass dilepton enhancement in 1995

- p-Be and p-Au well described by decay cocktail
- Significant excess in S-Au (factor ~5 for m>200 MeV)
- Onset at ~ 2 m_{π} suggested $\pi \pi$ annihilation
- Maximum below ρ meson near 400 MeV

Hints towards modified p meson in dense medium

Discovery of Low Mass Dilepton Enhancement

Dilepton excess at low and intermediate masses well established

Theoretical Calculation of π - π Annihilation

- Low mass enhancement due to $\pi\pi$ annihilation
 - Spectral shape dominated ρ meson
- Vacuum ρ propagator
 - Vacuum values of width and mass
- In medium ρ propagator
 - Brown-Rho scaling
 - Dropping masses as chiral symmetry is restored
 - Rapp-Wambach melting resonances Collision broadening of spectral function Only indirectly related to chiral symmetry restoration
 - Medium modifications driven by baryon density
- Model space-time evolution of collision
 - Different approaches
 - Consistent with hadron production data
 - Largest contribution from hadronic phase

Comparison of Theory and CERES Data

Clear evidence for medium modifications, data not accurate enough to distinguish models

Intermediate Mass Region

Large enhancement Consitent with charm enhancement by factor 3 Strong centrality dependence

Comparison to Calculation of Thermal Radiation

Data from CERES-2 with TPC Upgrade

- Data taking in 1999 and 2000
 - Improved mass resolution
 - Improved background rejection
 - Results remain statistic limited
- Pb-Au data from 40 AGeV Enhancement for m_{ee} > 0.2 GeV/c² 5.9±1.5(stat)±1.2(syst)±1.8(decays)

Strong enhancement at lower √s or larger baryon density

- Preliminary 158 AGeV Pb-Au data
 - Consistent with 95/96 CERES data
 - Increase centrality 30% → 8%
 - Analysis in progress

First Results from CERES-2

shown by H.Appelshäuser

• Preliminary data Pb-Au at 158 AGeV

- Cocktail normalized to π⁰
- Statistical errors only
- Increased resolution
 - May constrain models once systematic errors evaluated
- Lower pT cut
 - Enhancement (m_{ee}> 0.2 GeV/c²) increases

3.3±0.3(*stat*) p_T>200 MeV/c 5.6±0.4(*stat*) p_T>100 MeV/c

hadron cocktail

broadening of ρ

Brown-Rho scaling

Enhancement increases at low p_T

Large Enhancement at Low p_T

CERES: Centrality Dependence of Enhancement

- Naïve expectation: Quadratic multiplicity dependence
 - medium radiation ∝ particle density squared
- More realistic: smaller than quadratic increase
 - Volume change
 - Density profile (e.g. participant density) in transverse plane
 - Life time of reaction volume

Comparison of Data from Different Experiments

 Insufficient accuracy, limited power to constrain models

Need higher statistics, better resolution

A New Era: The NA60 Experiment

Combine Silicon pixel telescope with NA50 muon spectrometer Not to scale! 2.5 T dipole magnet muon trigger and tracking vertex tracker beam tracker magnetic targets field hadron absorber Match vertex tracks with muon tracks in coordinate and momentum space **Improved detector** dN/dM [events per 10 MeV] 05 σ (ω) = 29±1 MeV performance (0)pА σ (φ) = 32±1 MeV σ (J/ψ) = 97±4 MeV Much better mass resolution BG Reduce remaining π , K decay background J/ψ +++ Larger low mass acceptance 10 **Capability to reconstruct** secondary vertex 1-0.5 0.5 1.5 2 2.5 3 M (PC dimuon) [GeV] 1.5 2.5 1 2 M (VT dimuon) [GeV]

Detailed p-A Reference Data from NA60

Shown by Hermine Wöhri

Elementary 4π meson production cross-sections Nuclear dependence of production cross-sections

First Look at Low Mass Region in In-In

Shown by Gianluca Usia

Low mass continuum

- High statistics from $2m_{\mu}$ upward
- Low pair acceptance for low mass
- Pair acceptance different from

Clearly visible hadron decays

- BR: (5.8 +/- 0.8) 10⁻⁶)
- **Eventually well calibrated cocktail**
- For heavy ion collisions

First quantitative analysis of ϕ

First quantitative analysis of ϕ in In-In

First Look at **\$\$** Meson from In-In

- Step towards clarifying the SPS ϕ puzzle
 - Accurately measured yields, slopes, and centrality dependence
- No indication for medium modifications of φ
 - m_{ϕ} independent of N_{part} within few MeV

First Look at Centrality Dependence of Continuum

Preview on Open Charm Measurement

• Use decay length of D mesons

 $D^+: c\tau = 312 \ \mu m$ $D^0: c\tau = 123 \ \mu m$

- Analysis:
 - Charm Measure vertex x,y,z with beam tracker & vertex tracker
 - Measure the muon track offset at the vertex
 - Cut on weighted distance prompt and offset μμ sample
- Sneak preview:
 - Charm continuum clearly enriched in charm selection

Shown by Ruben Shahoyan

Dileptons Measured at Low Energies

- DLS puzzle
 - Strong enhancement over hadronic cocktail with "free" ρ spectral function
 - Enhancement not described by in-medium ρ spectral function
- Verification expected to come soon from HADES
- Connection of enhancement to SPS results not clear

KEK E235 p-A Collisions at 12 GeV Beam Energy

- Access over hadronic sources: ρ , ω , $\Phi \rightarrow e^+e^-$, $\omega \rightarrow \pi e^+e^-$, $\eta \rightarrow \gamma e^+e^-$
 - Shoulder below ρ,ω
 - Changed ϕ width $\mathbf{C} \rightarrow \mathbf{C}\mathbf{u}$ target

Hints for medium modification in cold nuclear matter?

Predictions for RHIC

R. Rapp, nucl-ex 0204003

Dilepton measurement at RHIC very promising

PHENIX Measures Electron Pairs

- First attempt from 2002 run with Au-Au
 - $S/B \sim 1/500$ for min. bias events
 - **Two small statistics**

- Au-Au data taken in 2004
 - $\sim 100x$ statistics
 - **Photon conversions reduced by factor 2-3**
 - **Expect background reduction by** ~ 2

Precision Dilepton Measurement with PHENIX

Hadron Blind Detector (HBD)

- Dalitz rejection via opening angle
 - Identify electrons in field free region
 - Veto signal electrons with partner
- HBD concept:
 - windowless CF4 Cherenkov detector
 - 50 cm radiator length
 - CsI reflective photocathode
 - Triple GEM with pad readout

• Construction/installation 2005/2006

Future for Electromagnetic Probes

- Experiments at different √s probe different regions of phase diagram
 - NA60 µµ pairs at the SPS transition region
 - HADES ee pairs at SIS dense hadronic matter
 - PHENIX ee pairs and γ at RHIC strongly coupled plasma

Dilepton and Photons

Cocktail of Known Sources

- Hadron decays
 - Dalitz decays π⁰, η
 - Direct decays ρ/ω and ϕ
- Hard processes
 - Charm (beauty) production
 - Important at high mass & high p_T
 - Much larger at RHIC than at the SPS
- Cocktail of known sources
 - Measure spectra & yields
 - Use known decay kinematics
 - Apply detector acceptance

