Recent High-p_T Results from STAR

Carl A. Gagliardi

Texas A&M University

- Introduction
- Spectra
- Elliptic flow
- Correlations
- Forward physics

What We Know – Jet Quenching

Inclusive yields and back-to-back di-hadron correlations are very similar in p+p and d+Au collisions

Both are strongly suppressed in central Au+Au collisions at 200 GeV

What We Know – Baryon Enhancement

Clear meson-baryon yield differences at intermediate p_T They seem to come together at $p_T \sim 5-6$ GeV/c

Identified Strange Particles in 200 GeV d+Au

Yields to ~ 5 GeV/c measured vs centrality

Meson-Baryon Difference in d+Au 200 GeV

 R_{CP} also shows a clear meson-baryon pattern in d+Au

Pseudo-rapidity Density in d+Au

Particle yields are consistent with a range of models

1.1

0.9

3

2

general expectations of saturation or coalescence; doesn't match pQCD prediction.

⁶ ρ_T (GeV/c)

5

$\pi^0 p_T$ Spectrum in 200 GeV d+Au

Neutral pion p_T spectrum to 13-16 GeV/c

Reasonable agreement with pQCD calculation, STAR charged-hadrons, and PHENIX neutral pions

See talk by Andre Mischke, Mon pm

Au+Au at 62 GeV: Charged-Particle Yields

Spectrum shapes similar, but high- p_T absolute yield down over an order of magnitude at 62 GeV relative to 200 GeV

Inclusive Hadron Suppression

2 η bins, driven by p+p

$$- \eta = 0: p_T < 6 \text{ GeV}$$

 Significant suppression seen at 62 and 200 GeV

 R_{CP} : Centrality Dependence

- Significant suppression in both η regions
- 62 GeV $\eta \sim 0.7$ very similar to 200 GeV $\eta \sim 0$

Additional Particle Identification Techniques

- TOF using MRPC chambers
- π^0 conversion into $e^+e^-e^+e^-$
- *dE/dx* relativistic rise

Charged and Neutral Pions in 62 GeV Au+Au

Three different techniques – good agreement

h/π Ratios in 62 GeV Au+Au

h/π higher in central Au+Au than peripheral. Ratios approach at $p_{\tau} \sim 6$ GeV/c

π^{\pm} Nuclear Modification Factor

- R_{CP} for h+- 20% higher than π +- for p_{τ} = 3-4 GeV/c
- R_{CP} for h+- and π +- merge at p_T = 5~6 GeV/c
- Consistent with h/π ratio

Azimuthal Anisotropy and Partonic Energy Loss

$$\frac{1}{d\phi} \propto 1 + 2v_2(p_T) \cos[2(\phi - \Psi_R)]$$

Anisotropy at high p_T is sensitive to the gluon density of the medium.

Separating Flow from Non-Flow at 200 GeV

nucl-ex/0407007

Flow at High p_T in 200 GeV Au+Au

Flow reaches a maximum ~3 GeV/c, then decreases slowly Sizable real flow to ~8 GeV/c in mid-central collisions

 $v_2(p_T)$ is very similar for 62 GeV to 200 GeV

Back-to-Back Correlations vs. Reaction Plane

Near-side correlations: independent of orientation

Back-to-back correlations: suppressed more strongly when the path length is longer

Di-Hadron Angular Distributions: 62 GeV vs 200 GeV Au+Au

Near-side correlated yields are much reduced at 62 GeV Away-side angular distribution is very similar

Finding the Associated Hadrons

Explores the interaction of an energetic parton with the dense medium

What about the near-side yield?

A discrepancy? See Dan Magestro's talk, Mon am!

Extending Two-Particle Correlations to Higher p_T

Triggering with the STAR barrel and endcap EMC's gives extended reach for correlation studies with high E_{τ} photons

Forward Particle Production in d+Au Collisions

Do we understand forward π^0 production in p + p?

Bourelly and Soffer (hep-ph/0311110): NLO pQCD calculations underpredict the data at low \sqrt{s} from ISR $\sigma_{data}/\sigma_{pQCD}$ appears to be function of θ , \sqrt{s} in addition to p_T Carl Gagliardi – Hard Probes '04

Forward π^0 Inclusive Cross Section STAR $\mathbf{p} + \mathbf{p} \rightarrow \pi^0 + \mathbf{X}$ √s = 200 GeV (η)=3.8 - hep-ex/0310058 (n)=3.3 - STAR Preliminary NLO pQCD calc.

- STAR data at
 - ⟨η⟩= 3.8 (PRL 92, 171801)
 - $\langle \eta \rangle$ = 3.3 (hep-ex/0403012, **Preliminary**)
- NLO pQCD calculations at fixed η with equal factorization and renormalization scales = p_T

 Solid and dashed curves differ primarily in the $g \rightarrow \pi$ fragmentation function

STAR data consistent with Next-to-Leading Order pQCD **calculations** in contrast to data at lower \sqrt{s}

Carl Gagliardi – Hard Probes '04

Conclusions

- Jet quenching, elliptic flow, and di-hadron correlations are all very similar in 62 GeV Au+Au to the results from 200 GeV Au+Au
- Meson-baryon differences are also present in d+Au and 62 GeV Au+Au at intermediate p_T
- The saturation picture is consistent with backfront asymmetries and forward-midrapidity correlations in d+Au
- Lots more about STAR high-p_T correlations tomorrow morning

Solenoid Tracker At RHIC **522 collaborators 51 institutions 12 countries**

Carl Gagliardi – Hard Probes '04

The 62 GeV Reference Spectrum Problem

π -(K+p) Separation

π^{\pm} Nuclear Modification Factor

- R_{CP} h+- 20% higher than π +- p_T =3-4 GeV/c; consistent with h/ π ratio
- Vitev prediction at dN/dy=650
- ISR pp parametrization same as PHENIX

v₂ vs. Geometry in 200 GeV Au+Au

Carl Gagliardi – Hard Probes '04

q

g

• q + g
$$\rightarrow$$
 q + g (2 \rightarrow 2) \rightarrow π^0 + X

• q + g
$$\rightarrow$$
 q + g + g (2 \rightarrow 3) \rightarrow π^0 + X

Forward – Mid-Rapidity Correlations

Final state correlations allow reconstruction of parton kinematics...

Broad rapidity range at STAR enables broad coverage of parton kinematics

Nuclear enhancement of gluon field : A^{1/3}x ~ 6x (Au case)?

• FPD: $|\eta| \sim 4.0$

- TPC and Barrel EMC: $|\eta| < 1.0$
- Endcap EMC: 1.0 < η < 2.0
- FTPC: 2.8 < |η| < 3.8

Back-to-Back Azimuthal Correlations

over a large rapidity interval

S = Probability of "correlated" event under Gaussian

B = Probability of "un-correlated" event under constant

 σ_{s} = Width of Gaussian

Carl Gagliardi – Hard Probes '04

Carl Gagliardi – Hard Probes '04