

Deployment of CompChem VO

Osvaldo Gervasi and Antonio Laganà University of Perugia, Italy Den Haag, Nov 24, 2004

www.eu-egee.org

INFSO-RI-508833

Summary

- Introduction
- The CompChem VO
 - The COST in Chemistry Initiative
 - The GEMS project
- Deployment of the VO
 - GILDA test bed
 - The ce.grid.unipg.it Resource Centre (RC)
 - Implementation of GEMS prototype
 - Consortium agreement between members
 - List of members
- Conclusions

- The problem of simulating in a realistic way complex processes on a molecular basis without resorting into phenomenological or ad hoc empirical approaches is a vital need for scientists
 - investigating new materials
 - biological systems
 - life science
 - food and drug action
 - chemical processes ...
- Up to now only specific models limited to simplified examples have been considered due to the difficulty of dealing with the complexity of realistic systems.

- The rapid development of Grid technologies is making this possible by
 - connecting the expertise, software and hardware needed to build a Molecular Simulator on a single distributed system
 - coordinating the various phases through a web based Workflow management environment
 - using a common User Interface (UI) to give to the users the access to the Grid facilities
 - enabling the usage of a large number of computer nodes
 - implementing a good security infrastructure

The CompChem VO

 The CompChem VO originates from the collaboration between various research groups participating to the COST Chemistry initiative of the EU

- In particular from the WGs of the Action D23: Metachem: Metalaboratories for Complex Computational Applications in Chemistry
- Also some national initiatives like GRID.IT by the Italian National Research Council have contributed on putting together expertise from various groups.

COST- Countries (2002) Participating Institutions

Eritrea (1)

India (1)

COST Member States

- The twentyfive EU Member States
 - EFTA Member States
 - Iceland
 - Norway
 - Switzerland*

Candidate Counties

- ↗ Bulgaria
- Romania
- ↗ Turkey *

• Other Countries

- ↗ Federal Republic of Yugoslavia*
- Former Yugoslav Republic of Macedonia*
- ↗ Croatia *

Co-operating State

* Not Associated to FP

- Created in 1992
- 34 Actions launched since 1992 (12 completed with final evaluation)
- 22 running (10 had the mid term evaluation)
- Research Chemists from 31 COST Countries
- Associated Institutions from Australia, Japan, Russia, Ukraine and the USA

- MURQM: Multireference Quantum Chemical Methods
- **DIRAC**: Four Component Relativistic Quantum Chemical Calculations
- **SIMBEX**: Simulation of Molecular Beam Experiments
- DYSTS: Dynamics and Spectroscopy of Systems : Relevant to Environment and Applied Chemistry
- **ELCHEM**: E-learning Technologies for Chemistry
- ICAB: Integration of Codes for Ab Initio Methods

Simbex

Murqm

Dirac

Elchem

Icab

Dysts

INFSO-RI-508833

CGCC The architecture of the Simulator

- Isolated (gas phase) small molecules
 - GAMESS-UK, GAMESS US, MOLPRO
- Isolated (gas phase) large molecules
 - (GAUSSIAN03)
- Condensed phase and solid state calculations
- Large Molecules Topological analysis of interaction
 - (AIMPAC, TOPOND)
- Modeling and functional representations of the potential energy surfaces
 - FITTING

- Exact quantum dynamics for small systems

 (TD)
- Semiclassical and mixed classical-quantum for intermediate systems
 - (ABCsem)
- QM/MM and Car Parrinello
 - (CPMD)
- Classical dynamics
 - (ABCtraj, VENUS; DL_POLY)

- Structure and stability calculations for aggregates of various sizes
- Kinetics and fluid dynamics calculations
- Thermodynamics properties
- Direct Monte Carlo calculations
 - (DSMC)
- Condensed phase and liquid crystals
- Cross sections and rate coefficients
 - Energy and angular distributions

- AB INITIO METHODS (MOLPRO, GAMESS, ADC, GAUSSIAN,) resource requests are proportional to N³ (N is the number of electrons) and to M^D (M is the number of grid points per dimension D) for CPU and disc demand.
- EMPIRICAL FORCE FIELDS (Venus, DL_POLY, ...) • resource requests are proportional to P! (P is the number of atoms)

Programs

Deployment of the VO

- Even if all technical aspects have been implemented and we should able to start the deployment of the CompChem VO, we have chosen to begin in a stable environment. We have chosen so far to adopt GILDA certificates participating to the test bed infrastructure
 - A new Resource Centre has been ported into GILDA (13 nodes + CE + SE)
 - A User Interface has been created to interface the user to the Grid
 - A prototype implementation of the Molecular Simulator has been deployed (two hours ago has been shown in the Demo session)
 - Also a prototype implementation of the Molecular Simulator has been deployed in GENIUS, thanks to the collaboration with INFN Catania and CNAF people (effective and wonderful experience!)

- The implementation of the prototype has shown the most relevant aspects of GEMS
 - Interactive access to the Grid through Sockets
 - We use the supported set of ports: 20000-25000, left open by the firewall in all nodes of the Grid
 - We need a **small latency** to schedule the job on the Grid
 - Parallel and distributed nature of most CompChem programs
 - MPI prerequisite in all nodes
 - We need the highest possible number of Working Nodes

- Commercial Licence of some programs

- Some programs, especially those for the Ab Initio calculations (GAMESS, MOLPRO, MOLCAS, etc) require a Commercial Licence even if used for Research purposes.
- A strategy for acquiring the licences for the users of the Grid may be sought.
- Several sites own the licence for various programs in their machines. We need a mechanism to map the sites owning those programs, so that using this information the user may specify such requisite in the JDL script, when submitting the job to the Grid.

- We will start right now the deployment of the VO, following the instruction received on Monday <u>https://edms.cern.ch/document/503245</u>
- A consortium agreement will be signed with us by the participating institutions.
- We will contribute to the Grid with new resources and expertise.
- A new COST D23 Action called GridChem will be started next year following the ending initiative MetaChem.

List of candidate members

Enabling Grids for E-sciencE

Institution

#Researchers

Dept.Chemistry, University of Barcelona	5
Dept. Physical Chemistry, Univ. Basque Country	3
Institute of Chemistry, Hungarian Academy of Sciences	2
School of Chemistry, Bristol	3
Institute for Theoretical Chemistry and Structural Biology University of	f Vienna 3
Department of Chemistry, University of Bari,	3
Department of Chemistry, Univesity of Bologna	3
ISTM, Italian National Research Council, Perugia	6
Dept. of Chemistry, University of Perugia	5
COST working groups	27
TOTAL	60

- Preliminary activities of the VO have been illustrated
 - The experience inside GILDA VO
 - The deployment of a Resource Center
 - The prototype of GEMS
- The main issues related to the implementation of the prototype of the simulator have been discussed
 - Interactivity (via Sockets)
 - MPI as a requirement for CompChem jobs
 - The standard open ports of Grid firewalls are used
 - Commercial licences
 - Acquisition policy for the Grid users?
 - Propagation of related information described via JDL