

LCG-2 Middleware Internals and APIs

www.eu-egee.org

Geneal comment

- You should download the tarball from the tutorial agenda.
 - wms-api-example.tar
 - Also you can copy and unpack the tarball in grid-tutor.ct.infn.it
 - /home/scampana/CERN-tutorial/wms-api-example.tar
- Skeletons of the exercises will be available in the main directory
 - This includes a multipurpose Makefile
- Solutions of the exercises will be available in the "SOLUTIONS" subdirectory
- There will be three exercises:
 - Building a JDL
 - Submit a job
 - Use edg-brokerinfo

JDL preparation

- Use the C++ APIs to:
 - build a JDL with the following characteristics:
 - Executes some "home made" shell script
 - You have to create this script as well.
 - If there are waiting jobs ranks by the negative number of them, otherwise ranks by the number of free CPUs
 - Requires CEs in production status, with outbound connectivity and allowing a jobs 6 minutes long (CPU time)
 - Retrieves the .Brokerinfo file for further usage
 - Print on screen the string representation of such JDL
 - Dump the resulting JDL into a file for future use
 - Use the skeleton "prepare-jdl.cpp"
- Obtain a matchmaking of your JDL
 - Including the ranking
- Submit the JDL using the command line
 - Check the status from time to time
- Retrieve the output

Submitting a job

- Try to compile "workload.cpp"
 - submit the test JDL using the binary you obtain
 - Do you know RB and LB?
 - Have a look in \$EDG_LOCATION/etc/<voname>/
- Starting from the skeleton "workload.cpp":
 - Before job submission perform matchmaking
 - Print matching resources and their rank
 - Retrieve automatically the output once the job is finished
- Try the new version with the test JDL
- Modify again workload.cpp so that
 - The job is cancelled as soon as it gets in "RUN" state.

Brokerinfo

- Use the edg-brokerinfo command line to obtain:
 - The name of the CE
 - The name of the CloseSE
 - For EACH CloseSE, its mount-point
- Try with both the "example.BrokerInfo" file and the .Brokerinfo you retrieved with the job.
- Write a C++ application which does the same
 - Start from the skeleton "Brokerinfo-example.cpp"
 - You can also try to obtain:
 - The VO name
 - The SE protocols
 - The SE port
 - ...