
11 Database Workshop for LHC Developers 25-Jan-2005

HARP Raw Event Database
A Case Study in Oracle Development @ CERN

Andrea Valassi
(CERN IT-ADC)

22 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Introducing the context:
Objectivity to Oracle migration

• End of Objectivity support at CERN in 2003
– HARP migration project started in 2002, completed in January 2004
– Significant reuse of COMPASS migration tools and software

• Migration of both HARP data and software
– Raw events and conditions data: will only cover event data in this talk
– 200 GB metadata in Oracle and 25 TB raw BLOBs in Castor flat files
– Oracle read-only software for event analysis in HARP Gaudi framework

• For more information: CHEP 2004 poster and paper
http://indico.cern.ch/contributionDisplay.py?contribId=448&sessionId=24&confId=0

33 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Raw data (BLOBs on tape files)
vs. metadata (Oracle)

• Main Oracle table: the event table
– 800M events = 800M rows
– Event table alone: >95% Oracle disk space

• Total: 100 GB data and 110 GB indexes
– Event table is main COMPASS table too

• COMPASS factor 10 larger: >3 TB in Oracle
• HARP also has more complex metadata

• Each event row has the metadata for
the raw event record (BLOB) on tape
– Record file offset and record size
– Event records alone: >95% data on tape

• Total: 25 TB data in 30k files
• COMPASS: >300 TB data in Castor

• BLOBs on flat files vs BLOBS in Oracle
– No need to query events by BLOB content
– No need for 25 TB of Oracle space
– No need for ~AMS-like retrieval from tape
– Easier to manage, no obvious disadvantage

……..………………..…
…xxxxxxxxxxxxxxxxxx
xxxxxxx…………..……
…………….……….…
…xxxxxxxxxxxxxxxxxx
xxxxxxxxx..……………
…………….………..

/castor/xxx/PartialRun12345-1.raw

44 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Oracle development in practice:
a few points from the HARP case

• Logical schema design for the HARP event data model
– Run/…/Event table hierarchy with composite primary keys (indexes)
– Collection/Setting/Run table hierarchy with redundant integrity constraints

• Users and roles
– Separate owner/writer accounts (one per data set) from the reader account

• Physical schema design
– Separate data tablespaces and index tablespaces
– Run range partitioning for the Run/../Event tables with local indexes
– Use one tablespace for each partition (of table or index)

• Simplify and optimize read access to summary information
– Encapsulate complex joins, subqueries, group by rollup into views
– Speed up read access via materialized views with global query rewrite

• C++ access (using the OCCI library)
– Write access: bulk insertion with bind variables, one statement per table
– Read access: bulk retrieval with prefetching/caching
– Execute queries (basic selection) on the database server, not in the C++ client

• Data management practices and useful tools
– Encapsulate schema creation in SQL scripts executed through sqlplus
– Interactive tests of DDL/DML/select using Benthic and TOra

55 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Logical schema design:
the HARP hierarchical event data model (1)

• Runs and below – data and metadata from the DAQ
– Two ‘partial runs’ in each run – two separate event builders in the DAQ
– Many (partial) ‘spills’ in each (partial) run – bursts from the PS beam
– Many events in each spill

• Runs and above – higher level (bookkeeping) metadata
– Runs are grouped in “settings” (beam momentum, target type, etc)
– Settings are grouped in “collections” (physics, cosmics, etc.)
– Two Objectivity “federations”: 2001 and 2002 data sets

• Migration proceeded in two phases
– 1. Bulk data migration, one ‘partial run’ (file) at a time

• One partial run = one Objectivity file
• Start with a self-contained Oracle subschema for partial runs, partial spills, events

– 2. Higher level metadata migration
• Lower data volumes, more complexity, extensive checks of internal consistency
• Complete full Oracle schema with setting and collection metadata
• Add all final summary tables for end-user analysis

66 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Logical schema design:
the HARP hierarchical
event data model (2)

Partial runs
contain partial spills

Events

Partial spills
contain events

Federations
contain partial runs

Runs
contain partial runs

Settings
contain runs

Collections
contain settings

Federations
contain collections

Event type (calibration, physics)

Run record type (SOR, EOR, …)
Run record

 Second phase
– Add collections, settings, runs

 First phase
– Self-contained subschema
– Only federations, partial runs,

partial spills, events and the
associated records and types

77 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

RAW_RUN

PK,FK2,FK3,U1 RUN_ID N-Decimal(5,0)

RUN_STARTTIME N-Decimal(10,0)
RUN_ENDTIME N-Decimal(10,0)
DHA_ATTTYPE0 N-Decimal(10,0)
DHA_ATTTYPE1 N-Decimal(10,0)
DHA_DETMASK0 N-Decimal(10,0)
DHA_DETMASK1 N-Decimal(10,0)
DHA_DETMASK2 N-Decimal(10,0)
DHA_TIMEMICROSEC N-Decimal(10,0)

FK2 RUNRECORD_EVBID N-Decimal(1,0)
FK3 RAWSPILL_EVBID N-Decimal(1,0)
FK1,U1 FEDERATION_ID N-Decimal(1,0)
FK1,U1 COLLECTION_NAME C-Variable Length(30)
FK1,U1 SETTING_ID N-Decimal(3,0)

EXPECTED_RAWPARTIALRUNS N-Decimal(10,0)
ORACLE_INSERTIONTIME T-Auto Timestamp
ORACLE_INSERTIONHOST N-Decimal(3,0)
ORACLE_LASTUPDATETIME T-Auto Timestamp
ORACLE_LASTUPDATEHOST N-Decimal(3,0)

COLLECTION

PK,U1 COLLECTION_NAME C-Variable Length(30)

COLLECTION_DESCRIPTION C-Variable Length(255)
FK1,U1 FEDERATION_ID N-Decimal(1,0)

EXPECTED_SETTINGS N-Decimal(3,0)
COLLECTION_OBJYOID C-Variable Length(30)
ORACLE_INSERTIONTIME T-Auto Timestamp
ORACLE_INSERTIONHOST N-Decimal(3,0)
ORACLE_LASTUPDATETIME T-Auto Timestamp
ORACLE_LASTUPDATEHOST N-Decimal(3,0)

RAW_PARTIAL_SPILL

PK,FK1 RUN_ID N-Decimal(5,0)
PK,FK1 EVB_ID N-Decimal(1,0)
PK SPILL_ID N-Decimal(10,0)

SPILL_TIME N-Decimal(10,0)
SOBRECORD_FILEOFFSET N-Decimal(10,0)
SOBRECORD_SIZE N-Decimal(10,0)
SOBRECORD_OBJYOID C-Variable Length(30)
EOBRECORD_FILEOFFSET N-Decimal(10,0)
EOBRECORD_SIZE N-Decimal(10,0)
EOBRECORD_OBJYOID C-Variable Length(30)
ORACLE_INSERTIONTIME T-Auto Timestamp
ORACLE_INSERTIONHOST N-Decimal(3,0)
ORACLE_LASTUPDATETIME T-Auto Timestamp
ORACLE_LASTUPDATEHOST N-Decimal(3,0)

RAW_EVENT_TYPE

PK TYPE_ID N-Decimal(1,0)

TYPE_NAME C-Variable Length(19)

RAW_PARTIAL_RUN

PK,FK2,I1 RUN_ID N-Decimal(5,0)
PK,I1 EVB_ID N-Decimal(1,0)

EVB_NODENAME C-Variable Length(255)
RUN_STARTTIME N-Decimal(10,0)
RUN_ENDTIME N-Decimal(10,0)
DHA_ATTTYPE0 N-Decimal(10,0)
DHA_ATTTYPE1 N-Decimal(10,0)
DHA_DETMASK0 N-Decimal(10,0)
DHA_DETMASK1 N-Decimal(10,0)
DHA_DETMASK2 N-Decimal(10,0)
DHA_TIMEMICROSEC N-Decimal(10,0)
FILE_DIR C-Variable Length(255)
FILE_NAME C-Variable Length(255)
SORRECORD_FILEOFFSET N-Decimal(10,0)
SORRECORD_SIZE N-Decimal(10,0)
SORRECORD_OBJYOID C-Variable Length(30)

FK1 FEDERATION_ID N-Decimal(1,0)
COLLECTION_NAME C-Variable Length(30)
SETTING_ID N-Decimal(3,0)
EXPECTED_RAWPRUNRECORDS N-Decimal(10,0)
EXPECTED_RAWPARTIALSPILLS N-Decimal(10,0)
EXPECTED_RAWEVENTS N-Decimal(10,0)
EXPECTED_RAWRECTOTALSIZE N-Decimal(10,0)
ORACLE_INSERTIONTIME T-Auto Timestamp
ORACLE_INSERTIONTIME2 T-Auto Timestamp
ORACLE_INSERTIONHOST N-Decimal(3,0)
ORACLE_LASTUPDATETIME T-Auto Timestamp
ORACLE_LASTUPDATEHOST N-Decimal(3,0)

FEDERATION

PK FEDERATION_ID N-Decimal(1,0)

FEDERATION_NAME C-Variable Length(13)

RAW_EVENT

PK,FK1,U1,I1 RUN_ID N-Decimal(5,0)
PK,FK1,U1 EVB_ID N-Decimal(1,0)
PK,FK1 SPILL_ID N-Decimal(10,0)
PK EVENTINPARTIALSPILL_ID N-Decimal(10,0)

U1 EVENT_TIME N-Decimal(10,0)
FK2,I2 EVENT_TYPEID N-Decimal(1,0)
I1 EVENT_ID N-Decimal(10,0)

EVENTINSPILL_ID N-Decimal(10,0)
DHA_ATTTYPE0 N-Decimal(10,0)
DHA_ATTTYPE1 N-Decimal(10,0)
DHA_DETMASK0 N-Decimal(10,0)
DHA_DETMASK1 N-Decimal(10,0)
DHA_DETMASK2 N-Decimal(10,0)

U1 DHA_TIMEMICROSEC N-Decimal(10,0)
EVENTRECORD_FILEOFFSET N-Decimal(10,0)
EVENTRECORD_SIZE N-Decimal(10,0)
EVENTRECORD_OBJYOID C-Variable Length(30)
ORACLE_INSERTIONTIME T-Auto Timestamp
ORACLE_INSERTIONHOST N-Decimal(3,0)
ORACLE_LASTUPDATETIME T-Auto Timestamp
ORACLE_LASTUPDATEHOST N-Decimal(3,0)

RAW_PRUN_RECORD

PK,FK1 RUN_ID N-Decimal(5,0)
PK,FK1 EVB_ID N-Decimal(1,0)
PK RECORDINPRUN_ID N-Decimal(10,0)

FK2 RUNRECORD_TYPEID N-Decimal(1,0)
RUNRECORD_FILEOFFSET N-Decimal(10,0)
RUNRECORD_SIZE N-Decimal(10,0)
RUNRECORD_OBJYOID C-Variable Length(30)
ORACLE_INSERTIONTIME T-Auto Timestamp
ORACLE_INSERTIONHOST N-Decimal(3,0)
ORACLE_LASTUPDATETIME T-Auto Timestamp
ORACLE_LASTUPDATEHOST N-Decimal(3,0)

SETTING

PK,U1 SETTING_ID N-Decimal(3,0)

TARGET_ID N-Decimal(4,0)
TARGET_NAME C-Variable Length(30)
BEAM_MOMENTUM N-Variable Length(30)
DIPOLE_CURRENT N-Variable Length(30)
SOLENOID_CURRENT N-Variable Length(30)
TRIGGER_NAME C-Variable Length(30)
TRIGGER_VERSION N-Decimal(4,0)

FK1,U1 FEDERATION_ID N-Decimal(1,0)
FK1,U1 COLLECTION_NAME C-Variable Length(30)

EXPECTED_RAWRUNS N-Decimal(5,0)
SETTING_OBJYOID C-Variable Length(30)
ORACLE_INSERTIONTIME T-Auto Timestamp
ORACLE_INSERTIONHOST N-Decimal(3,0)
ORACLE_LASTUPDATETIME T-Auto Timestamp
ORACLE_LASTUPDATEHOST N-Decimal(3,0)

belongs to

belongs to

is of type

belongs to

belongs to

describes

belongs to

belongs to

belongs to

spill records are in

run records are in

RAW_RUN_RECORD_TYPE1

PK TYPE_ID N-Decimal(1,0)

TYPE_NAME C-Variable Length(17)

is of type

88 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Logical schema design:
primary keys

• Define primary keys whenever appropriate (almost always!)
– All Harp tables have a primary key
– They make the schema more understandable (even to the developer!)
– They automatically imply the creation of an index for faster access

• Primary keys can span more than one column
– For Harp runs to events: follow the hierarchical data model

• Runs: (run#)
• Partial runs: (run#, evb#)
• Partial spills: (run#, evb#, spill#)
• Events: (run#, evb#, spill#, event-in-partial-spill#)

–– The most common HARP read access pattern (via run#) uses these The most common HARP read access pattern (via run#) uses these indexesindexes

• Choose meaningful IDs (but you may use system assigned IDs too)
– For Harp events

• From DAQ: run# (e.g. 123), event-builder# (e.g. partial run 123-0 or 123-1), spill#
• System assigned (well, assigned by the C++ developer): event-in-partial-spill #

99 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Logical schema design:
integrity constraints (foreign/unique keys)

• Define integrity constraints whenever appropriate
– Almost always, if you have more than one relational table you want to JOIN!
– All Harp tables are related via integrity constraints (foreign keys)
– They make the schema more understandable (even to the developer!)
– They force the database to perform data consistency checks

• Foreign keys can span more than one column
– For Harp runs to events: follow the hierarchical data model

• E.g. partial spill (run#, evb#, spill#) belongs to partial run (run#, evb#)

• Foreign keys may reference either primary or unique keys
– For Harp, some redundant constraints are used because some redundant

columns are present (schema is not fully normalized), e.g. collection information

• May define foreign key constraints now and enable/validate them later
– E.g.: partial run (run#, evb#) belongs to (references) run (run#), but the run

table was filled only in the second phase of the migration

1010 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Users and roles

• Two (sets of) accounts
– One with full privileges for writing: data owner (DDL) and writer (DML)

• Actually two: HARPTESTFDRAW (2001 data) and HARPPHYSFDRAW (2002)
• Here I was both the schema owner and the writer: in other situations, it may even be

better to use different accounts if the owner and the writer are distinct persons
– One with read-only privileges for analysis: SELECT only

• A single account HARPUSER with read privileges on both of the above

• Granting (e.g. read-only) privileges
– Either directly, or you may grant privileges to a role, and the role to a user

• Role HARPREADER is granted SELECT privileges on all tables of HARP*RAW
• User HARPUSER is granted the HARPREADER role (by the DBA)

– Privileges must be granted by the table owner for each relevant table
• HARP*RAW grant SELECT privileges to HARPREADER for each relevant table
• At CERN we do not like to grant “SELECT ANY” privileges

1111 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Physical schema design:
table and index partitioning

• Use range partitioning by run# for the Run/PRun/PSpill/Event tables
– The run# is a variable used in ALL access patterns to the Harp data
– Range partitioning is much more natural than hash or list partitioning here

• Apply the same partitioning to all PKs and indexes: use local indexes
– Performance: when selecting events for a run#, only one index partition is used
– Partitioning on first column of composite PK ensures that PK is globally unique

• Store each partition in a separate tablespace
– Approximately 30 * 2 (data+index) partitions with 3 to 4 GB in each
– Manageability: original idea was to handle them as transportable tablespaces

• Minor technical issue: materialized views are treated as simple tables in this case
• More importantly: the need to transport data has never occurred (yet?)

• Was it really necessary? Maybe not, but here it does not harm!
– Performance? Largest help comes from indexing, but there may only be some

extra (though not very large) benefit from use of partitioned (local) indexes
– Manageability? Data rather static (no need to bring partitions online/offline

from tape backup) and not distributed outside CERN, but this was a useful test
– In summary: use partitioning wisely, it is not a synonym for faster and better!

1212 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Summary information:
views and materialized views

• Use views to hide the complexity of JOIN and GROUP BY queries
– Simplify developers’ lives: views (virtual tables) can be queried like real tables
– Ex. 1: ‘spill’ view merges information for two ‘partial spills’

• JOIN on the ‘run’ and ‘partial spill’ tables
• No need to write a separate ‘spill’ table: all the information is already there!

– Ex. 2: ‘extended (partial) run’ views hold summary info for each (partial) run
• GROUP BY queries on the ‘event’ table determines #events in each partial spill/run
• Additional GROUP BY and JOIN queries merge together all relevant information

• Speed up read access to (most of) these views via materialized views
– For HARP these were built (refreshed) only once after the Objy migration

• The HARP data are now read-only, no updates are foreseen
– Technical issue: you must enable global query rewrite to profit from m. views

• You query views or base tables, the optimizer rewrites them as queries on m. views
– Perform complex JOIN and GROUP queries only once and store the results

• Essential for summary information that is frequently accessed and heavy to compute
– Materialized views can be partitioned and indexed too (for HARP, they all are)

1313 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

RAW_PARTIAL_RUN_EXTENDED

RUN_ID
EVB_ID
EVB_NODENAME
RUN_STARTTIME
RUN_ENDTIME
DHA_ATTTYPE0
DHA_ATTTYPE1
DHA_DETMASK0
DHA_DETMASK1
DHA_DETMASK2
DHA_TIMEMICROSEC
FILE_DIR
FILE_NAME
SORRECORD_FILEOFFSET
SORRECORD_SIZE
SORRECORD_OBJYOID
FEDERATION_ID
COLLECTION_NAME
SETTING_ID
EXPECTED_RAWPRUNRECORDS
EXPECTED_RAWPARTIALSPILLS
EXPECTED_RAWEVENTS
EXPECTED_RAWRECTOTALSIZE
ORACLE_INSERTIONTIME
ORACLE_INSERTIONTIME2
ORACLE_INSERTIONHOST
ORACLE_LASTUPDATETIME
ORACLE_LASTUPDATEHOST
RAWPRUNRECORDS_NUMBER
RAWPRUNRECORDS_RECSIZE
RAWPARTIALSPILLS_NUMBER
RAWPARTIALSPILLS_RECSIZE
RAWEVENTS_NUMBER
RAWEVENTS_RECSIZE
RAWPHYEVENTS_NUMBER
RAWPHYEVENTS_RECSIZE
RAWCALEVENTS_NUMBER
RAWCALEVENTS_RECSIZE

create view raw_partial_run_extended
as
select
rpr.run_id,
… ,
rpr.oracle_lastupdatehost,
rprrpr0.rawprunrecords_number rawprunrecords_number,
rprrpr0.rawprunrecords_recsize rawprunrecords_recsize,
rpspr0.rawpartialspills_number rawpartialspills_number,
…,
rpspr0.rawcalevents_recsize
from
raw_partial_run rpr,
raw_prun_record_byprun0 rprrpr0,
raw_partial_spill_byprun0 rpspr0
where rprrpr0.run_id=rpr.run_id
and rprrpr0.evb_id=rpr.evb_id
and rpspr0.run_id=rpr.run_id
and rpspr0.evb_id=rpr.evb_id
order by run_id, evb_id

CREATE VIEW AS
JOIN OF 1 TABLE
AND 2 VIEWS

CREATE MATERIALIZED VIEW
AS SELECT FROM 1 VIEW

create materialized view raw_partial_run_extended_mv
partition by range (run_id) (…)
build immediate refresh on demand enable query rewrite
as
select * from raw_partial_run_extended;

create index rawpartialrunext_mv_indx
on raw_partial_run_extended_mv (run_id, evb_id) local
tablespace …;

1414 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

select
rr.run_id, …, rr.rawspills_recsize,
rpr_sum.rawprunrecords_number, …, rpr_sum.rawcalevents_recsize
from raw_run_withrecspi rr, raw_partial_run_byrun rpr_sum
where rr.run_id=rpr_sum.run_id
order by rr.run_id

CREATE VIEW AS JOIN OF 2 VIEWS

QUERY REWRITE:

QUERY ON RUN_EXTENDED VIEW
IS EXECUTED VIA

PARTIAL_RUN_EXTENDED_MV
MATERIALIZED VIEW!

Note: partition-wise join
(N instead of NxN)

PARTITION RANGE ALL
is before HASH JOIN

1515 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

C++ migration client:
bind variables and bulk operations

• Always use bind variables in the SQL your client sends to the server
– For write access

• ‘INSERT INTO RAW_RUN (RUN_ID, …) VALUES (:1, …);’ is GOOD!
• ‘INSERT INTO RAW_RUN (RUN_ID, …) VALUES (12345, …);’ is BAD!

– For read access
• ‘SELECT * FROM RAW_EVENT WHERE RUN_ID = :1;’ is GOOD!
• ‘SELECT * FROM RAW_EVENT WHERE RUN_ID = 12345;’ is BAD!

– Do not waste the CPU and memory of the server in parsing and optimizing SQL
statements: do it only once and reuse the same statement with different values

• Always use bulk operations in client/server communication
– Minimize the number of client/server network round trips

• For both write (bulk insert/update) and read access (pre-fetched result set)
– Using bulk insertion and bind variables was essential in HARP migration client

• 4 separate (OCCI) C++ Statement instances to insert data into 4 different tables

• Bind variables and bulk operations exist for many languages and drivers
– OCCI was used for HARP: very intuitive and user friendly API, excellent doc
– The same concepts exist for OCI, ODBC, JDBC, and also for the POOL RAL

1616 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

C++ end-user read access:
let the database do the basic selection

• HARP hierarchical event loop
– Example: “run this job on the runs belonging to the PHYSICS collection, with

the beam colliding against the XXX target”
– Objectivity implementation: retrieve all and loop in the C++ client memory

• Retrieve (from server into C++ client memory) all settings in PHYSICS collection
• Loop (in C++ client memory) over all such settings, select those with target=XXX
• For each selected setting, retrieve all runs in it, etc etc.

– Oracle implementation: let the database server do the selection
• Query database server for settings in PHYSICS collection AND with target=XXX
• Retrieve (from server into C++ client memory) only the selected settings
• For each selected setting, retrieve all runs in it, etc etc

• Reengineering of jobOptions-driven C++ event selection
– Objy: EventSelection class can be applied to an Event object (returns bool)
– Oracle: EventSelection class can also ‘describe itself’ as a string

• Selection algorithmic becomes technology independent, the same code can be
executed against both backends (could still be improved to use bind variables…)

– More details in the CHEP2004 poster and paper linked to the Workshop agenda

1717 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Useful tools (IMO)

• Interactive analysis and SQL optimization: Benthic, TOra
– IMO, much better than sqlplus for interactive optimization of SQL queries

• Display the execution plan, add indexes and materialized views, iterate again...
– Use Benthic for Oracle on Windows, use TOra on Linux (or for MySQL...)

• Batch execution of SQL statements: sqlplus
– There are many ways to create the schema (DDL SQL): interactively using

TOra/Benthic/sqlplus, executing scripts in batch, in the C++ client, ...
• For HARP, all DDL operations were kept in SQL scripts and executed with sqlplus
• If you need Oracle/MySQL compatibility, you may choose to let RAL handle it in C++

– Only one recommandation: make sure you can rebuild your schema in a
reproducible way (include in your scripts/C++ all changes, eg indexes, views, ...)

• Reverse engineering: MS Visio, Oracle Designer
– My personal approach: design the schema on paper, prototype/finalize the DDL

SQL using Benthic/sqlplus, then make nice pictures from reverse engineering
• The pictures you saw in this talk come from MS Visio

– You could also design the schema from the start using a tool (e.g. JDeveloper)

1818 Andrea Valassi IT-ADC 25-Jan-2005HARP Database Case Study

Conclusions

• BLOBs can be kept outside the database if not queried

• Always use primary keys and foreign keys!
– Additional indexes and constraints may also help
– Think of the most common access patterns for both write and read

• Partitioning may help, but it is not always a necessity

• Views and materialized views make very useful summaries

• Always use bind variables and bulk operations!

• Ensure you can rebuild your schema in a reproducible way

• Oracle databases with TB’s of data already exist at CERN

