
Database Workshop for LHC online/offline developers

SQL (2/2)

Miguel Anjo (IT/ADC)
Miguel.Anjo@cern.ch

http://cern.ch/it-adc
(based on Andrea Valassi’ slides on Advanced SQL)

26 January 2005

26 January 2005 SQL (2/2)
Miguel Anjo

2

Previous tutorials:
“Database design” and “SQL (1/2)”

• DDL basics
– Table design, normal forms, constraints, primary/foreign keys
– CREATE/DROP/ALTER TABLE
– Data-types, NULL values

• DML basics
– INSERT, UPDATE, DELETE table rows

• SELECT basics: simple queries
– Restricting: WHERE, IN, LIKE, AND/OR, +/-…
– Sorting: ORDER BY, ASC/DESC…
– Aggregation: COUNT, SUM, MAX, GROUP BY, HAVING…
– Joins: equijoins, outer joins…

26 January 2005 SQL (2/2)
Miguel Anjo

3

Next hour and half: SQL (2/2)
• transactions

• advanced select
– self joins
– subqueries, inline views,

rownum
– correlated subqueries
– hierarchical queries

• granting/revoking

• synonyms, db links

• views

• materialized views

• data dictionary
– user_% views

• partitioning
– range, hash, composite

partitioning
– global, local indexes

• Index Organized Tables

• other indexes
– bitmap, function based,

composite

• flash back queries

• multi-dimensional
aggregation
– cube, rollup

26 January 2005 SQL (2/2)
Miguel Anjo

4

Transactions

• What if the database crashes in middle of several
updates?

• Transaction is a unit of work that can be either saved to the
database (COMMIT) or discarded (ROLLBACK).

• Objective: Read consistency, preview changes before save,
group logical related SQL

• Start: Any SQL operation

• End: COMMIT, ROLLBACK, DDL (CREATE TABLE,...)

• Rows changed (UPDATE, DELETE, INSERT) are locked to other
users until end of transaction

• Other users wait if try to change locked rows until end of
other transaction (READ COMMITTED mode)

• Other users get error if try to change locked rows
(SERIALIZABLE mode)

• If crashes, rollbacks.

26 January 2005 SQL (2/2)
Miguel Anjo

5

Transactions

• User A
SELECT balance FROM accounts

WHERE user = A;
(BALANCE = 300)

SELECT balance FROM accounts
WHERE user = A;

(BALANCE = 300)

SELECT balance FROM accounts
WHERE user = A;

(BALANCE = 300)

SELECT balance FROM accounts
WHERE user = A;

(BALANCE = 50)

• User B
UPDATE accounts
SET balance = balance-200
WHERE user = A;

SELECT balance FROM
accounts WHERE user = A;

(BALANCE = 100)

UPDATE accounts
SET balance = balance-50
WHERE user = A;

COMMIT;

26 January 2005 SQL (2/2)
Miguel Anjo

6

Advanced SQL queries

• Queries are often quite complex
– Selection conditions may depend on results of other queries
– A query on a table may involve recursive analysis of that table

• Examples:
– Do some employees earn more than their direct boss?
– Which employees work in the same department as Clark?
– Which employees are the bosses of someone else?
– Display all employees in hierarchical order
– Who are the five employees with higher salary?

• SQL provides efficient ways to perform such queries
– Much more efficient than using the application code language!

26 January 2005 SQL (2/2)
Miguel Anjo

7

Self joins (1/2)

• Normal join

• relate rows of two different tables sharing common
values in one or more columns of each table

– Typical case: a foreign key referring to a primary key
– What the name of the employee and his

department?

SQL> SELECT e.ename, d.dname
2 FROM emp e, dept d
3 WHERE e.deptno = d.deptno;

ENAME DNAME
---------- --------------
KING ACCOUNTING
BLAKE SALES
CLARK ACCOUNTING
JONES RESEARCH
(...)

26 January 2005 SQL (2/2)
Miguel Anjo

8

Self joins (2/2)

• Self joins

• relate rows of the same table sharing common values in
two different columns of that table

– A foreign key may refer to a primary key in the same
table!

– Which employees receive more than their manager?

SQL> SELECT e.ename,m.ename,
2 e.sal "EMP SAL", m.sal "MGR SAL"
3 FROM emp e, emp m
4 WHERE e.mgr= m.empno
5 AND e.sal > m.sal;

ENAME ENAME EMP SAL MGR SAL
---------- ---------- ---------- ----------
FORD JONES 3000 2975
SCOTT JONES 3000 2975

26 January 2005 SQL (2/2)
Miguel Anjo

9

Subqueries (1/3)

Who works in the same department as Clark?

Subqueries are useful when a query
is based on unknown values

Main query

“Which employees work
in Clark’s department?”

Subquery

(“What is Clark’s department?”)

26 January 2005 SQL (2/2)
Miguel Anjo

10

Subqueries (2/3)
– Who works in the same department as Clark?

SQL> SELECT ename FROM emp
2 WHERE deptno = (SELECT deptno
3 FROM emp
4 WHERE ename = 'CLARK');

• Logically, think of subqueries in the following way:

– Subqueries (inner queries) execute once before the main
query

– The subquery results are used by the main query (outer
query)

Optimization may actually lead to a different execution implementation
(But you should not worry about that anyway!)

ENAME

KING
CLARK
MILLER

26 January 2005 SQL (2/2)
Miguel Anjo

11

Types of subqueries (3/3)
• Single-row (and single-column) subquery

– who works in THE same department as Clark?
SELECT … WHERE dep = (SELECT dep FROM…)

• Multiple-row (and single-column) subquery
– which are the names of the MANY employees that are

someone else’s managers?
SELECT … WHERE empno IN (SELECT mgr FROM…)

• Multiple-column subquery
– who works in the same department(s) AND under the

same boss(es) as Clark or Ross?
SELECT … WHERE (dep, mgr) = (SELECT dep, mgr FROM…)

• SQL detects all cardinality inconsistencies
– you cannot

SELECT … WHERE empno = (SELECT empno, mgr FROM…)

26 January 2005 SQL (2/2)
Miguel Anjo

12

Correlated subqueries

– Who are the employees that receive more than the
average salary of their department?

• In previous subqueries the inner query was executed ONLY ONCE
before the main query
– the same inner query result applies to all outer query rows

• Now the inner query is evaluated FOR EACH ROW produced by the
outer query

SELECT empno, ename, sal, deptno
FROM emp e
WHERE sal > (SELECT AVG(sal)

FROM emp
WHERE deptno = e.deptno)
ORDER BY deptno, sal DESC;

• In selecting, correlated subqueries are similar to joins
– Though there may be performance (dis)advantages in both solutions
– Big difference: they may also be used in updates (for filtering rows)

EMPNO ENAME SAL DEPTNO
----- ------ ---- ------
7839 KING 5000 10
7902 FORD 3000 20
7788 SCOTT 3000 20
7566 JONES 2975 20
7698 BLAKE 2850 30
7499 ALLEN 1600 30

26 January 2005 SQL (2/2)
Miguel Anjo

13

Subqueries in the FROM clause
(“inline view”)

– What are the employees salary and the maximum salary
in their department?

• We cannot mix group functions with other rows
SQL> SELECT ename, sal, MAX(sal), deptno FROM emp;
SELECT ename, sal, MAX(sal), deptno FROM emp

*
ERROR at line 1:
ORA-00937: not a single-group group function

• We can use a “inline view” as the data source on
which the main query is executed (FROM clause)

SELECT e.ename, e.sal, a.maxsal, a.deptno
FROM emp e,

(SELECT max(sal) maxsal, deptno
FROM emp
GROUP BY deptno) a

WHERE e.deptno = a.deptno
ORDER BY e.deptno, e.sal DESC;

ENAME SAL MAXSAL DEPTNO
------ ----- ------ ------
KING 5000 5000 10
CLARK 2450 5000 10
MILLER 1300 5000 10
SCOTT 3000 3000 20
SMITH 800 3000 20
(...)

26 January 2005 SQL (2/2)
Miguel Anjo

14

Top-N queries

– What are the 5 most well paid employees?

• We need to use in-line view together with the ROWNUM
pseudocolumn)

SELECT empno, ename, job, sal
FROM
(SELECT empno, ename, job, sal

FROM emp
ORDER BY sal DESC)

WHERE ROWNUM < 6;

– And the next 5 most well paid?
SELECT empno, ename, job, sal

FROM (SELECT ROWNUM row#, empno, ename, job, sal
FROM (SELECT empno, ename, job, sal

FROM emp
ORDER BY sal DESC))

WHERE row# BETWEEN 6 and 10;

EMPNO ENAME JOB SAL
----- ------ --------- ----
7839 KING PRESIDENT 5000
7902 FORD ANALYST 3000
7788 SCOTT ANALYST 3000
7566 JONES MANAGER 2975
7698 BLAKE MANAGER 2850

26 January 2005 SQL (2/2)
Miguel Anjo

15

Hierarchical queries

• Display selected data in a hierarchical order
(using only one SQL statement!)

Who sits at the top of the pyramid?
Who is next in line?

• Syntax:
SELECT… FROM… WHERE… START WITH <condition>
CONNECT BY key_next_row = PRIOR key_last_row

• Pseudo-column LEVEL is the hierarchy level

Hierarchical SQL queries are Oracle-specific

26 January 2005 SQL (2/2)
Miguel Anjo

16

Hierarchical queries: example

SELECT empno, ename, mgr, LEVEL
FROM emp
CONNECT BY PRIOR empno = mgr;

EMPNO NAME MGR LEVEL
----- --------- --- -----
101 Kochhar 100 1
108 Greenberg 101 2
109 Faviet 108 3
110 Chen 108 3
111 Sciarra 108 3
112 Urman 108 3
113 Popp 108 3

26 January 2005 SQL (2/2)
Miguel Anjo

17

Views

– I want the users not to see the salary but the department
location in a simple query

CREATE VIEW v_emp AS
(SELECT ename, job, dname

FROM emp, dept

WHERE emp.deptno = dept.deptno);

– If emp or dept table changes, v_emp will appear to have
changed!

– A view is a stored SQL statement that defines a virtual
table

SELECT * FROM v_emp;

ENAME JOB DNAME
------ --------- ----------
KING PRESIDENT ACCOUNTING
BLAKE MANAGER SALES
CLARK MANAGER ACCOUNTING
(...)

26 January 2005 SQL (2/2)
Miguel Anjo

18

Views: benefits and typical usage

• Why use views?

To make complex queries easy
• Hide joins, subqueries, order behind the view
• Provide different representations of same data

To restrict data access
• Restrict the columns which can be queried
• Restrict the rows that queries may return
• Restrict the rows and columns that may be modified

To provide abstract interfaces for data
independence
• Users formulate their queries on the views (virtual

tables)

26 January 2005 SQL (2/2)
Miguel Anjo

19

Materialized views

• Tables created as subqueries are stored but do not
follow changes in base tables

• Views defined as subqueries follow changes in
base tables but are not stored
– Impractical if querying big base table is costly

• Materialized views created as subqueries are
tables whose stored values follow changes in base
tables!
– They occupy space, but they significantly speed up

queries!

Materialized views (snapshots) are Oracle-specific
(although the concept of “summary table” is more generic)

26 January 2005 SQL (2/2)
Miguel Anjo

20

Materialized views and query rewrite

• Typical syntax for materialized views:
– CREATE MATERIALIZED VIEW mv2

BUILD IMMEDIATE
REFRESH ON COMMIT
ENABLE QUERY REWRITE
AS (SELECT… FROM tab1)

• A query on tab1 will be rewritten using mv2 if the
QUERY_REWRITE mechanism is switched on
– ALTER SESSION SET QUERY_REWRITE_ENABLED=TRUE
– ALTER SESSION SET QUERY_REWRITE_INTEGRITY=TRUSTED;

Your DBA must grant you the QUERY REWRITE
privilege

GRANT QUERY REWRITE TO <user>

NB: Some m.v.’s are not allowed (e.g. join + group + refresh on
commit)

26 January 2005 SQL (2/2)
Miguel Anjo

21

Materialized views: examples
CREATE MATERIALIZED VIEW mv_sal_per_deptno
BUILD IMMEDIATE
REFRESH ON COMMIT
ENABLE QUERY REWRITE
AS (SELECT deptno "DEPARTMENT", count(empno) "# EMP",

sum(sal) as "TOTAL SAL"
FROM emp
GROUP BY deptno);

Now

SELECT depto, count(empno) FROM emp GROUP BY deptno;

Would probably use mv_sal_per_deptno
materialized view (the Oracle optimizer checks if
worth)

26 January 2005 SQL (2/2)
Miguel Anjo

22

Materialized views: examples
CREATE MATERIALIZED VIEW mv_all_emps

REFRESH START WITH ROUND(SYSDATE + 1) + 11/24
NEXT NEXT_DAY(TRUNC(SYSDATE), 'MONDAY')) + 15/24
AS SELECT * FROM fran.emp@dallas

UNION
SELECT * FROM marco.emp@balt

Refresh every Monday
at 15:00

Select from remote databases
(next slides)

26 January 2005 SQL (2/2)
Miguel Anjo

23

Updatable views

– What about update v_emp?
(the view with employers, job and department name)

• Views can generally be used also to insert, update
or delete base table rows
– such views are referred to as updatable views

• Many restrictions (some are quite intuitive…)
– views are not updatable if they contain GROUP/ORDER BY
– Key preserved (base table row appears at most once)

• For extra consistency, specify “WITH CHECK OPTION”
CREATE VIEW v1 AS … WITH CHECK OPTION

– cannot insert or update in the base table if not possible to
select by the view after that modification!

26 January 2005 SQL (2/2)
Miguel Anjo

24

Grant / Revoke
– May I give read access to my tables/views to other user?

• DBA’s can grant/revoke any administrative privilege

• Only you can grant/revoke privileges
(select/insert/update/delete) on the objects you own
– Not even the DBA!

• Access can be granted on tables or columns
– Check in USER_TAB_PRIVS and USER_COL_PRIVS the privileges

you have granted or have been granted
(data dictionary tables, wait a few slides more)

– Use views to give access to a subset of the data only

• Accessing a table in another user’s schema:
SELECT * FROM oradb02.emp;

• It is good practice to create synonyms to hide the fact that
objects are outside of the schema (manageability)

26 January 2005 SQL (2/2)
Miguel Anjo

25

Synonyms

SELECT * FROM oradb31.emp, oradb33.emp, emp@devdb9

WHERE oradb31.emp.empno = oradb33.emp.empno

AND oradb31.emp.empno = emp@devdb9.empno;

– Can it be simpler?

• Synonyms are alias for tables, views,
sequences

CREATE SYNONYM emp31 FOR oradb31.emp;

SELECT * FROM emp31; = SELECT * FROM oradb31.emp;

• Used to give manageability, hide underlying
tables, simplify queries.

26 January 2005 SQL (2/2)
Miguel Anjo

26

Database links
– And if I’ve data in other machine?

• A database link is an object in the local database
that allows you to access objects on a remote
database CREATE DATABASE LINK devdb

CONNECT TO scott IDENTIFIED BY tiger
USING ‘devdb’;

• Access to tables over a database link:
SELECT * FROM emp@devdb;

• Use synonyms to hide the fact that a table is
remote: CREATE SYNONYM dev_emp for emp@devdb;

• Try avoid joins between local and remote tables
– Push the join as much as possible into the remote tables
– Oracle 9i optimizer tries it best

26 January 2005 SQL (2/2)
Miguel Anjo

27

Sequences

– Is there a number generator for unique integers?

• A “sequence” is a database object that generates
(in/de)creasing unique integer numbers

• Can be used as Primary Key for the rows of a table
– In the absence of a more “natural” choice for row ID

• Better than generating ID in application code
– Very efficient thanks to caching
– Uniqueness over multiple sessions, transaction safe, no

locks

• No guarantee that ID will be continuous
– rollback, use in >1 tables, concurrent sessions
– Gaps less likely if caching switched off

26 January 2005 SQL (2/2)
Miguel Anjo

28

Creating and using sequences

• Sequence creation (with many options)
CREATE SEQUENCE seq_deptno
INCREMENT BY 10 (default is 1)
MAXVALUE 1000 (default is 10^27)
NOCACHE; (default is `CACHE 20’ values)

• Get values:
SELECT seq_deptno.NEXTVAL FROM DUAL; -- 1
SELECT seq_deptno.CURRVAL FROM DUAL; -- 1

INSERT INTO dept VALUES
(seq_dept.NEXTVAL,‘HR’,‘ATALANTA’); -- 11

26 January 2005 SQL (2/2)
Miguel Anjo

29

Data dictionary views

Schema information:

storage of the user’s objectsuser_segments,
user_extents

system privileges
roles granted to the user
privileges granted on the user’s objects

user_sys_privs,
user_role_privs,
user_tab_privs

objects created in the user’s schemauser_objects,
user_tables,
user_views…

lists all of the tablespaces + how much
can be used, how much is used

user_ts_quotas

• all_* tables with information about accessible objects

26 January 2005 SQL (2/2)
Miguel Anjo

30

Data dictionary views

SELECT * FROM user_ts_quotas;

TABLESPACE_NAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
--------------- --------- --------- ------ ----------
TRAINING_INDX 65536 -1 16 -1
TRAINING_DATA 869597184 -1 212304 -1
TEMP 0 -1 0 -1
DATA 0 -1 0 -1
INDX 0 -1 0 -1

26 January 2005 SQL (2/2)
Miguel Anjo

31

Partitioning
– My queries are getting slow as my table is enormous...

• Partitioning is the key concept to ensure the scalability of a
database to a very large size
– data warehouses (large DBs loaded with data accumulated over

many years, optimized for read only data analysis)
– online systems (periodic data acquisition from many sources)

• Tables and indices can be decomposed into smaller and
more manageable pieces called partitions
– Manageability: data management operations at partition level

• parallel backup, parallel data loading on independent
partitions

– Query performance: partition pruning
• queries restricted only to the relevant partitions of the table

– Partitioning is transparent to user applications
• tables/indices logically unchanged even if physically

partitioned!

26 January 2005 SQL (2/2)
Miguel Anjo

32

Types of partitioning
Partitioning according to values of one (or more)

column(s)
• Range: partition by predefined ranges of continuous values
• Hash: partition according to hashing algorithm applied by

Oracle
• Composite: e.g. range-partition by key1, hash-subpartition by

key2
• List: partition by lists of predefined discrete values (release 9i

only)

List
(Oracle9i)

(R+H) Composite
(L+H) Composite

Range Hash

26 January 2005 SQL (2/2)
Miguel Anjo

33

Partitioning benefits:
partition pruning

Loading data into a table partitioned by date range

Querying data from a table partitioned by date
range

INSERT INTO sales (…, sale_date, …)
VALUES (…, TO_DATE(’3-MARCH-2001’,’dd-mon-yyyy’), …);

JAN2001 FEB2001 MAR2001 DEC2001…

SELECT … FROM sales
WHERE sales_date = TO_DATE (’14-DEC-2001’,’dd-mon-yyyy’);

JAN2001 FEB2001 MAR2001 DEC2001…

26 January 2005 SQL (2/2)
Miguel Anjo

34

Partition benefits:
partition-wise joins

• Without partitioning: global join (query time ~ N x N)

• With partitioning: local joins (query time ~ N)

SELECT … FROM tab1, tab2 WHERE tab1.key = tab2.key AND …

tab1
join

JAN2001 FEB2001 MAR2001 DEC2001…

JAN2001 FEB2001 MAR2001 DEC2001… tab2

tab1JAN2001 FEB2001 MAR2001 DEC2001…

JAN2001 FEB2001 MAR2001 DEC2001… tab2
joins

26 January 2005 35

Partition examples:
Range partitioning

CREATE TABLE events
(event_id NUMBER(10),
event_data BLOB)

PARTITION BY RANGE(event_id) (
PARTITION evts_0_100k

VALUES LESS THAN (100000)
TABLESPACE tsa,

PARTITION evts_100k_200k
VALUES LESS THAN (200000)
TABLESPACE tsb,

PARTITION evts_200k_300k
VALUES LESS THAN (300000)
TABLESPACE tsc

);
EVTS_100K_200K

EVTS_0_100K

EVTS_200K_300K

Assigning different partitions to
different tablespaces further
simplifies data management
operations (export/backup) and
allows parallel I/O on different
filesystems.
[For dedicated servers only!
Standard users do not need this!]

26 January 2005 SQL (2/2)
Miguel Anjo

36

Hash partitioning

• Hash partitioning is an alternative to range partitioning
– When there is no a-priori criterion to group the data
– When it is important to balance partition sizes
– When all partitions are equally frequent accessed

• Use range partitioning for historical/ageing data!

• Syntax example:
CREATE TABLE files (…, filename, …)

PARTITION BY HASH (filename) PARTITIONS 5;

– Specify the partitioning key(s) and the number of
partitions

– The hashing algorithm cannot be chosen or modified

Composite partitioning
• Use composite partitioning for very large tables:

– First, partition by range (typically, by date ranges)
– Further subpartition by hash each primary partition

CREATE TABLE sales (sale_id, sale_date, customer_id, …)
PARTITION BY RANGE (sale_date) (
PARTITION y94q1 VALUES
LESS THAN TO_DATE(1994-03-01,’YYYY-MM-DD’),

PARTITION …, PARTITION …)
SUBPARTITION BY HASH (customer_id) PARTITIONS 16;

Example: a SALES table
-Range partitioning by date
(quarters)
-Hash subpartitioning by
customer ID

26 January 2005 SQL (2/2)
Miguel Anjo

38

Partitioned (local) indexes

• Indexes for partitioned tables can be partitioned too
– Local indices: defined within the scope of a partition
CREATE INDEX i_sale_date ON sales (sale_date) LOCAL

– In contrast to global indexes: defined on the table as a whole

• Combine the advantages of partitioning and indexing:
– Partitioning improves query performance by pruning
– Local index improves performance on full scan of partition

• Prefer local indexes, but global indexes are also needed
– A Primary Key constraint on a column automatically builds for it

a global B*-tree index (PK is globally unique within the table)

• Bitmap indexes on partitioned tables are always local
– The concept of global index only applies to B*-tree indexes

26 January 2005 SQL (2/2)
Miguel Anjo

39

• If a table is most often accessed via a PK, it may be useful
to build the table itself like a B*-tree index!
– In contrast to standard “heap” tables

• Advantages and disadvantages:
– Faster queries (no need to look up the real table)
– Reduced size (no separate index, efficient compression)
– But performance may degrade if access is not via the PK

• IOT syntax
CREATE TABLE orders (

order_id NUMBER(10),
…, …, …

CONSTRAINT pk_orders PRIMARY KEY (order_id)
)
ORGANIZATION INDEX;

Index organized tables (IOT)

26 January 2005 40

Bitmap indexes

• Indexes with a bitmap of
the column values

• When to use?
– low cardinalities (columns

with few discrete
values/<1%)

– Merge of several AND, OR,
NOT and = in WHERE
clause

SELECT * FROM costumers
WHERE mar_status=‘MARRIED’
AND region =‘CENTRAL’
OR region =‘WEST’;

CREATE BITMAP INDEX
i_costumers_region ON
costumers(region);

26 January 2005 SQL (2/2)
Miguel Anjo

41

Function-based indexes

• Indexes created after applying function to column
– They speed up queries that evaluate those functions to select

data
– Typical example, if customers are stored as “ROSS”, “Ross”,

“ross”:
CREATE INDEX customer_name_index
ON sales (UPPER(customer_name));

• Bitmap indices can also be function-based
– Allowing to map continuous ranges to discrete cardinalities
– For instance, map dates to quarters:
CREATE BITMAP INDEX sale_date_index
ON sales (UPPER TO_CHAR(sale_date, ‘YYYY”Q”Q’));

– Combining bitmap indices separately built on different columns
speeds up multidimensional queries (“AND” of conditions along
different axes)

26 January 2005 SQL (2/2)
Miguel Anjo

42

Reverse key indexes

• Index with key reversed (last characters first)

• When to use?

– Most of keys share first characters (filenames with path)

– No use of range SELECTs (BETWEEN, <, >, ...)

– 123, 124, 125 will be indexed as 321, 421, 521

• How to create?

CREATE INDEX i_ename ON emp (ename) REVERSE;

26 January 2005 SQL (2/2)
Miguel Anjo

43

Composite indexes

• Index over multiple columns in a table
• When to use?

– When WHERE clause uses more than one column
– To increase selectivity joining columns of low selectivity

• How to create?
– Columns with higher selectivity first
– Columns that can be alone in WHERE clause first

CREATE INDEX i_mgr_deptno ON emp(mgr, deptno);

SELECT * FROM emp
WHERE mgr = 7698
AND deptno = 30
AND ename LIKE ‘Richard%’;

769820 AAACBeAADAAAKX8AAJ
769830 AAACBeAADAAAKX8AAG
778210 AAACBeAADAAAKX8AAN
778820 AAACBeAADAAAKX8AAM
783910 AAACBeAADAAAKX8AAC
783920 AAACBeAADAAAKX8AAD

MGR
DEPTNO

ROWID

26 January 2005 SQL (2/2)
Miguel Anjo

44

Sneak preview of Flashback queries

• Query all data at point in time
SELECT * FROM emp AS OF ‘2:00 P.M.’ WHERE …

• Flashback Versions Query
– See all versions of a row between two times
– See transactions that changed the row

SELECT * FROM emp
VERSIONS BETWEEN ‘2:00 PM’ and ‘3:00 PM’ WHERE …

• Flashback Transaction Query
– See all changes made by a transaction

SELECT * FROM dba_transaction_query
WHERE xid = ‘000200030000002D’;

26 January 2005 SQL (2/2)
Miguel Anjo

45

Multi-dimensional aggregation

• We saw how to group table rows by values of N columns

• Oracle data-warehousing features offer ways to also display
integrated totals for the rows in these slices :
– Group first by column x, then (within x-groups) by column y

SELECT x, y, count(*), … FROM… GROUP BY ROLLUP (x,y)
e.g. display daily sales, as well as monthly and yearly subtotals

– Group by column x and column y at the same time
SELECT x, y, count(*), … FROM… GROUP BY CUBE (x,y)

e.g. display sales by product and region, as well as subtotals by
product for all regions and subtotals by region for all products

The rows generated by CUBE/ROLLUP
can be found by GROUPING(x) =

1 if x is a “fake” NULL from CUBE or ROLLUP
0 otherwise (x is a “true” NULL or is not NULL)

CUBE and ROLLUP in practice

coun
t

yx

C

B

A

A

2

2

2

1

1

2

1

2

GROUP BY x, y

GROUP BY
CUBE (x,y)

SELECT x, y, count(*)
FROM t GROUP BY…

yx

2B

1A

2C

2A

2B

1A

= GROUP BY ROLLUP (x,y)
+ x-subtotals ∀y

GROUP BY
ROLLUP (x,y)

= GROUP BY x,y
+ y-subtotals ∀x

C

B

A

6
1

2

3

countyx

NULL

C

B

A
A

NULL

NULL

2

NULL

2

NULL

2
1

1

2

1
2

2
1

4
2

countyx

NULL

NULL

2

NULL

2

NULL

2
1

6

1
1
2
2
3
1
2

NULL

NULL

C
C
B

A
A

NULL

B

A

26 January 2005 SQL (2/2)
Miguel Anjo

47

References

• “Oracle SQL: The Essential Reference”
David Kreines & Ken Jacobs (O'Reilly, 2000)

• “Mastering Oracle SQL”
S. Mishra & A. Beaulieu (O'Reilly, 2002)

• “Beginning Oracle Programming”
S. Dillon, C. Beck & T. Kyte (Wrox, 2002)

• http://www.ss64.com/ora (Oracle commands)

• Oracle online documentation

http://otn.oracle.com or http://oradoc.cern.ch

26 January 2005 SQL (2/2)
Miguel Anjo

48

Hands-on exercises: SQL

• At 14:00 in Bld: 572 rooms 23-25

• Exercises on this morning SQL
tutorials

• Using SQL*Plus connected to
training database. More info this
afternoon.

Bon appetit!

26 January 2005 SQL (2/2)
Miguel Anjo

49

THE END

Thank you!

Questions?Questions?

Contact:Contact:
PhysicsPhysics--Database.Support@cern.chDatabase.Support@cern.ch

