
1

Oracle Database
Session Level Tuning

Bjørn Engsig
bjorn.engsig@oracle.com

Overview
y Introduction
y How is the time spent?
y Time based tuning
y Wait events
y Using SQL_TRACE
y Using ”event 10046”

y Tuning possibilities
– CPU
– wait events
– latches
– I/O

y Programming
practices

– Cursor handling
– Bind variables

2

Some typical performance
questions
y Why is database performance ALWAYS a hot topic?
y Why does my application not scale?
y Where does my performance problem really come

from?
y Can I set a magic init.ora parameter?

– There are in fact some, although not magical ones!

This presentation focuses on SQL processing -
rather than on data processing

A famous picture

Time
Design Development Implementation Production

Taking a look at tuning cost and
benefit over time from application
design till full production use

Tuning cost increases in time

Cost

Tuning benefit decreases in time

Benefit

3

Sources of performance
problems
y Using too many resources, such as CPU or disk I/O

– Potential cause of poor response time
(my SQL statement takes too long to execute)

y Waiting for others holding a single resource, such
as a latch

– Potential cause of poor scalability
(adding more CPU doesn’t allow me to run more

concurrent users)
– Causes contention for the resource

How is the time spent?

y Various steps takes place when the user asks for
some processing

– SQL statements sent to the server
– Data blocks read from disk
– Blocks processed in the cache
– Waiting for locks
– … much more

4

How is the time is spent?

Block processed in cache
Block read from disk
Waiting for a lock

time

You need to half the time - how would you tune?

How is the time is spent?

Buffer cache hit ratio is only 86%
- let me increase it to 95% - that should help!

time

Not even 100% is good enough!

time

5

How is the time is spent?

Would decreasing lock waiting time help?
– No!

Would getting faster disks help?
– No!

time

You need to reduce the number of blocks processed

How is the time is spent?
Block processed in cache
Block read from disk
Waiting for a lock

time

You need to half the time - how would you tune?

6

How is the time is spent?

Reduce lock wait time

time

time

How is the time is spent?
Block processed in cache
Block read from disk
Waiting for a lock
Waiting for a library cache latch

time

You need to half the time - how would you tune?

7

How is the time spent?

y Remove the latch wait time

time

time

Time based tuning
y YAPP formula:

response time = service time + wait time
y What is really processing time and wait time?
y Modified formula:Σ

response time = time componentiΣ

8

Getting tuning data from your
application
y Prepare your application to produce these data
y Measure time spent calling Oracle inside your

application
y Make Oracle produce timing data with an Oracle

perspective

y Think of the complete application as a single-
threaded sequence of operations

Measuring time

y The more places you can measure time, the better
y Oracle can precisely do it with its perspective

– Really done in the server process

Time

Application

Oracle CPU

Oracle Wait

call Oracle return call

an Oracle wait event

9

Oracle CPU time and wait events

y Oracle time reporting
– Oracle measures the CPU time spent and the time

spent in various wait events.
y CPU time

– Processing data in blocks, evaluating expressions
– Executing PL/SQL such as stored procedures

y Wait time
– Reading data from disk
– Waiting for a lock

SQL_TRACE

y SQL_TRACE is used to trace SQL execution
y It will show CPU and elapsed time for all individual

steps
– Parse, execute, fetch

y It will show number of blocks processed
y It will show the execution plan

10

SQL_TRACE

y Turned on/off with
alter session set sql_trace=true/false

y Executed like any other SQL statement
y Output is generated in trace files found on the

database server
y CERN has a system to send these via email to the

user

SQL_TRACE sample output

y PARSING IN … - shows the SQL statement
y PARSE #n: - shows that a parse took place
y EXEC #n: - shows that an execute took place
y The handling of cursors, with parse, execute, etc will be

explained later

PARSING IN CURSOR #3 len=33 dep=0 uid=21 oct=6 lid=21
hv=1693389691 ad='388bfaf4'

update rac1 set b=:b1 where a=:b2

PARSE #3:c=0,e=199,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,

EXEC #3:c=0,e=727,p=0,cr=2,cu=2,mis=0,r=1,dep=0,og=1,

EXEC #3:c=0,e=120,p=0,cr=2,cu=1,mis=0,r=1,dep=0,og=1,

XCTEND rlbk=0, rd_only=0

11

SQL_TRACE data

c=0 – CPU time in µs
e=0 – Elapsed time in µs
p=0 – Number of blocks physically read
cr=0 – Number of consistent read blocks
cu=0 – Number of current read blocks
mis=0 – explanation to follow….
r=0 – Number of rows
dep=0 – Recursive depth (e.g. 1 for SQL in PL/SQL)

PARSE #3:c=0,e=199,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,

Event 10046

y SQL_TRACE is the simple for of the famous ”event 10046”
y Search on metalink or for ’oracle 10046’ or google
y Set using the syntax:

alter session set events

‘10046 trace name context forever, level NN’

y NN=1: like setting sql_trace to true
y NN=4: Trace all events
y NN=8: Trace bind variable contents
y NN=12: Trace both
y NN=0: turn off, like setting sql_trace to false

12

Event 10046 example

PARSING IN CURSOR #3 len=33 dep=0 uid=21 oct=6 lid=21

update rac1 set b=:b1 where a=:b2

PARSE #3:c=0,e=186,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,

BINDS #3:

Bind#0

value=1177835187

Bind#1

value=23

WAIT #3: nam='enq: TX - row lock contention' ela= 2776415

EXEC #3:c=0,e=2777517,p=0,cr=2,cu=3,mis=0,r=1,dep=0,og=1,

Event 10046 example

y BINDS #n: – Show values (plus more) of bind
variables

y WAIT #n: – Show a wait event including elapsed
time

y Note in the example how there is a wait for a row
lock of around 2.7s, and that elapsed time for the
execute is also around 2.7s

13

10046
Let’s combine three slides!

Σ

response time = time componentiΣ

Application

Oracle CPU

Oracle Wait

call Oracle return call

an Oracle wait event

Too much data?
Want aggregation?
y The tkprof utility does exactly that
y Basic usage:
tkprof <tracefile> <outputfile>

y Makes aggregates per SQL statement
y Shows times, including wait times from 10046

level 8 for each
y Shows other statistics like number of buffers

14

tkprof output example

update rac1 set b=:b1

where

a=:b2

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 10 0.00 2.82 0 28 17 10

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 11 0.00 2.82 0 28 17 10

Misses in library cache during parse: 0

Optimizer mode: ALL_ROWS

Parsing user id: 21

tkprof output example, cont.

Rows Row Source Operation

------- ---

10 UPDATE RAC1 (cr=28 pr=0 pw=0 time=2797538 us)

10 INDEX UNIQUE SCAN SYS_C002813 (cr=20 pr=0 pw=0 time=269 us)(object
id

9680)

Elapsed times include waiting on following events:

Event waited on Times Max. Wait Total Waited

-- Waited ---------- ------------

enq: TX - row lock contention 2 2.77 2.77

SQL*Net message to client 10 0.00 0.00

SQL*Net message from client 10 0.00 0.00

buffer busy waits 6 0.00 0.01

15

What have we learned so far?

y Tuning is about finding how you spend the time
y If you use too much CPU, that’s what you should

reduce.
– This is not a matter of setting some parameters
– This really is looking at the application

y If you spend too much time waiting for various
events, this is what you should reduce

– Occasionally, setting parameters may help
– Often, modifying the application is needed

Tuning possibilities for CPU

y Order the SQL statements by CPU usage
y Logical I/O (buffer gets) is a primary CPU

consumer
y Tune SQL statements from the top of this

– Modify SQL statement, i.e. SQL tuning
– Reduce number of calls to SQL statement

y SQL statement tuning is primarily about reducing
the number of logical I/O’s

– Outside the scope of this presentation

16

Tuning possibilities for CPU

y High CPU may be a PL/SQL block or stored
procedure call

– Ignore if PL/SQL mostly does SQL
– Reduce PL/SQL if it mostly does procedural

processing

y If parsing has a high CPU usage, reduce parsing,
in particular hard parsing

??

Elapsed time vs. CPU time
y Oracle does not see processes waiting in the CPU

run queue
y If cpu+wait>elapsed, you are probably waiting for

the CPU to be available

Oracle CPU

Oracle Wait
an Oracle wait event

17

Tuning possibilities for wait
events

If your largest time component is a wait event
y Buffer management events
y I/O events
y Lock and latching events
y SQL*Net events

Buffer management events

Event name Description Possible tuning

free buffer waits Waiting for a free
buffer to be available

DBWR not able to keep up.
− Use asynchronous I/O
− Redistribute files
− Too small buffer cache

buffer busy waits Waiting for a specific
buffer to become
available

Details in v$waitstat - typically:
− Frequent updates to rows in same block
− Not using automatic segment space

management for massive insert
log file sync The redo log buffer

is being flushed
LGWR process not able to keep up
− Redistribute I/O
− Decrease commit activity

18

File I/O events

Event name Description Possible tuning

db file scattered read Waiting for a
scattered multiblock
read, i.e. a full table
scan

Reduce number of reads
− Avoid full table scan
− increase db_file_multiblock_read_count
− Use ‘cache’ option and keep pool

Reduce cost of reads
− Use faster disks
− distribute I/O differently

db file sequential
read

Waiting for a read
one block at a time

Reduce number of reads
− Increase db_block_buffers
− increase block size
− change indexing strategy
− use rowid

Reduce cost of reads
− Use faster or more disks
− distribute I/O differently

Locking and Latching events

Event name Description Possible tuning

latch free
(more details in 10g)

Waiting for a certain
latch to become
available

Check latches with high number of
sleeps from v$latch and take
appropriate steps

enqueue
(in 10g names is
more intuitive)

Waiting for an
enqueue (lock)

Use v$lock to identify locks, typical
causes:
− Holding row locks for too long
− Using table locks
− Space management - use locally

managed tablespaces

19

Tuning latch contention

La tch
nam e

D escrip tion P oss ib le tun ing

sh ared
p o o l

P ro tec tin g th e sh ared p o o l.
H eavily u sed d u rin g p ars in g - in
p a rticu la r h a rd p a rse . N o t u sed
d u in g execu te

− R ed u ce p ars in g b y u s in g b in d
va riab les

− A vo id h a rd p a rs in g
− U se cu rso r_sh arin g

lib rary
cach e

P ro tec tin g th e lib ra ry (S Q L) cach e
in th e sh ared p o o l. H eavily u sed
d u rin g so ft an d h ard p a rs in g ,
m in o r u se d u rin g execu te

− R ed u ce p ars in g
− S et sess io n _cach ed _cu rso rs
− cu rso r_sh arin g h as o n ly m in o r

e ffec t

ro w cach e P ro tec tin g th e d a ta d ic tio n ary
in fo rm atio n , o n ly n eed ed d u rin g
h ard p arse

− A vo id h a rd p a rs in g
− cu rso r_sh arin g w o rks w e ll

Tuning latch contention

Latch name Description Possible tuning

cache buffer
chain

Protects the hash chains of
cache buffers. Oracle9i and
later normally doesn’t show
it.

− Reduce need for buffers
− Often caused by hot blocks, e.g.

index root block

cache buffer lru
chain

Protects the LRU chains of
the cache buffers

− Increase db_block_lru_latches

20

SQL*Net events

Event name Description Possible tuning
SQL*Net more data
to/from client

All but the first of
multiple packages in
same direction

Can indicate slow
networks

SQL*Net message
from client

Foreground process
waiting for message
from client

None, expected high
when e.g. waiting for
user input

Parsing and executing SQL
statements
Oracle processes SQL statements:
y parse to verify syntax and access rights of the

SQL statement
y execute to actually process data
y fetch in queries to send retrieved data to the client

PARSE #1:c=10000,e=128791,p=0,cr=3,c

EXEC #1:c=0,e=157,p=0,cr=0,cu=0

FETCH #1:c=0,e=479,p=0,cr=1,cu=2

SQL> alter session set

2 sql_trace = true;

21

Parsing SQL statements

The hard parse does syntax checking
– High CPU cost
– Very high contention for several latches
– A parse is hard when the SQL is not already in the

library cache
The soft parse verifies access rights

– Some CPU cost
– High contention for several latches
– A parse is soft, if the SQL statement is already found

in the library cache

Application coding - category 1

parse(“select * from emp where empno=1234”);
execute();
fetch();

y Uses a literal (1234)
y Causes a hard parse for each SQL statement
y Cannot use the shared SQL area

y Only recommended for DSS type applications

22

Application coding - category 2

eno = 1234;
parse(“select * from emp where empno=:1”);
bind(“:1”, eno);
execute();
fetch();

y Uses a bind variable (:1) in stead of literal
y Causes a soft parse for each SQL statement
y Will use the shared SQL area

Application coding - category 3

parse(“select * from emp where empno=:1”);
bind(“:1”, eno);
loop

eno = <some value>;
execute();
fetch();

end loop;

y Only one single parse
y Efficiently uses the shared SQL area

23

SQL_TRACE data - recap

y You don’t want library cache misses
y During parse – this was a hard parse
y During execute – the statement was aged out

– With frequent executes, this is a sign of too small
shared pool (ask you DBA for more!)

mis=0 – Number of library cache misses

PARSE #3:c=0,e=199,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,

Does it really matter?

y Show CPU and latch wait time spent in Oracle
using the three application categories

y Shown for 1, 3, 6, 12 and 24 concurrent sessions
y Sessions simply makes 1000 selects using a

primary key like the examples shown on the
previous slide

y Absolute value shown has no significance
– But results are directly comparable

24

Hard parse (using literals)

0

500

1000

1500

2000

2500

1 3 6 12 24

Cat. 1, using a
literal

Cat. 2, using soft
parse

Cat. 3, repeating
execute only

Soft parse/no parse

0
20
40
60
80

100
120
140
160

1 3 6 12 24

Cat. 2, using soft
parse

Cat. 3, repeating
execute only

25

Cheating using
session_cached_cursors

0
20
40
60
80

100
120
140
160

1 3 6 12 24

Cat. 2, using soft
parse

Cat. 3, repeating
execute only

Cat. 2 with
session_cached_
cursors

Using session_cache_cursors

y Parameter that makes Oracle cache statements
on the server side

y Can be set for the whole database or per session
y The value specifies the number of cursors cached

per session
y The trade off is CPU for searches vs. less latch

contention
y Good values are around 10-20

26

Summary

y Tuning means measuring time
y Figure out, what really takes time
y Reduce time

– Make it more efficient (e.g. SQL tune, reduce locking)
– Do it fewer times (cache data in client, reduce

parsing)
y Don’t expect, that you always know all details

Very Frequent Problems

y Poor SQL
– Can be caused by the optimizer
– Most often, it is not

y Bad database design
– For the purists, everything should be 5th normal form
– For the practical, performing approach, 3½th normal

form is fine☺
y Poor application coding practices

– Too much parsing

27

Q U E S T I O N SQ U E S T I O N S
A N S W E R SA N S W E R S

