

Overview

- Introduction
- How is the time spent?
- Time based tuning
- Wait events
- Using SQL_TRACE
- Using "event 10046"
- Tuning possibilities

 CPU
 - wait events
 - latches
 - I/O
- Programming practices
 - Cursor handling
 - Bind variables

Oracle CPU time and wait events

- Oracle time reporting
 - Oracle measures the CPU time spent and the time spent in various *wait events.*
- CPU time
 - Processing data in blocks, evaluating expressions

- Executing PL/SQL such as stored procedures
- Wait time
 - Reading data from disk
 - Waiting for a lock

SQL_TRACE

Turned on/off with

alter session set sql_trace=true/false

- Executed like any other SQL statement
- Output is generated in trace files found on the database server
- CERN has a system to send these via email to the user

SQL_TRACE sample output

PARSING IN CURSOR #3 len=33 dep=0 uid=21 oct=6 lid=21 hv=1693389691 ad='388bfaf4' update rac1 set b=:b1 where a=:b2 PARSE #3:c=0,e=199,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1, EXEC #3:c=0,e=727,p=0,cr=2,cu=2,mis=0,r=1,dep=0,og=1, EXEC #3:c=0,e=120,p=0,cr=2,cu=1,mis=0,r=1,dep=0,og=1, XCTEND rlbk=0, rd_only=0

- PARSING IN ... shows the SQL statement
- PARSE #n: shows that a parse took place
- EXEC #n: shows that an execute took place
- The handling of cursors, with parse, execute, etc will be explained later

ORACLE

SQL_TRACE data

PARSE #3:c=0,e=199,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,

c=0 – CPU time in µs

e=0 – Elapsed time in µs

p=0 – Number of blocks physically read

cr=0 - Number of consistent read blocks

cu=0 - Number of current read blocks

mis=0 – explanation to follow....

r=0 – Number of rows

dep=0 – Recursive depth (e.g. 1 for SQL in PL/SQL)

Event 10046 example

```
PARSING IN CURSOR #3 len=33 dep=0 uid=21 oct=6 lid=21
    update rac1 set b=:b1 where a=:b2
PARSE #3:c=0,e=186,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,
BINDS #3:
    Bind#0
    value=1177835187
Bind#1
    value=23
WAIT #3: nam='enq: TX - row lock contention' ela= 2776415
EXEC #3:c=0,e=2777517,p=0,cr=2,cu=3,mis=0,r=1,dep=0,og=1,
```


tkprof output example

update rac1 set b=:b1 where a=:b2

call	count	сри	elapsed	disk	query	current	rows
Parse	1	0.00	0.00	0	0	0	0
Execute	10	0.00	2.82	0	28	17	10
Fetch	0	0.00	0.00	0	0	0	0
total	11	0 00	2 82	0	28	17	10

Misses in library cache during parse: 0 Optimizer mode: ALL_ROWS Parsing user id: 21

tkprof output example, cont.					
Rows	Row Source Operation				
10 10 id 9680)	UPDATE RAC1 (cr=28 pr=0 pw=0 time INDEX UNIQUE SCAN SYS_C002813 (cr	=2797538 =20 pr=0	us) pw=0 time=26	9 us)(object	
Elapsed	times include waiting on following	events:			
Event	waited on	Times	Max. Wait	Total Waited	
		Waited			
enq: T	X - row lock contention	2	2.77	2.77	
SQL*Ne	et message to client	10	0.00	0.00	
SQL*Ne	et message from client	10	0.00	0.00	
buffer	busy waits	6	0.00	0.01	
			OR/	ACLE	

What have we learned so far?

- Tuning is about finding how you spend the time
- If you use too much CPU, that's what you should reduce.
 - This is not a matter of setting some parameters
 - This really is looking at the application
- If you spend too much time waiting for various events, this is what you should reduce
 - Occasionally, setting parameters may help
 - Often, modifying the application is needed

Tuning possibilities for wait events

If your largest time component is a wait event

- Buffer management events
- I/O events
- Lock and latching events
- SQL*Net events

Buffer management events

Event name	Description	Possible tuning
free buffer waits	Waiting for a free buffer to be available	DBWR not able to keep up. – Use asynchronous I/O – Redistribute files – Too small buffer cache
buffer busy waits	Waiting for a specific buffer to become available	Details in v\$waitstat - typically: – Frequent updates to rows in same block – Not using automatic segment space management for massive insert
log file sync	The redo log buffer is being flushed	LGWR process not able to keep up – Redistribute I/O – Decrease commit activity
		ORACLE

File I/O events

Event name	Description	Possible tuning
db file scattered read	Waiting for a scattered multiblock read, i.e. a full table scan	Reduce number of reads – Avoid full table scan – increase db_file_multiblock_read_count – Use 'cache' option and keep pool Reduce cost of reads – Use faster disks – distribute I/O differently
db file sequential read	Waiting for a read one block at a time	Reduce number of reads – Increase db_block_buffers – increase block size – change indexing strategy – use rowid Reduce cost of reads – Use faster or more disks
		- distribute I/O differently
		ORACLE

Locking and Latching events					
Event name	Description	Possible tuning			
latch free (more details in 10g)	Waiting for a certain latch to become available	Check latches with high number of sleeps from v\$latch and take appropriate steps			
enqueue (in 10g names is more intuitive)	Waiting for an enqueue (lock)	Use v\$lock to identify locks, typical causes: - Holding row locks for too long - Using table locks - Space management - use locally managed tablespaces			

Tuning latch contention

Latch	Description	Possible tuning
name		
shared	Protecting the shared pool.	 Reduce parsing by using bind
pool	Heavily used during parsing - in	variables
	particular hard parse. Not used	 Avoid hard parsing
	duing execute	– Use cursor_sharing
library	Protecting the library (SQL) cache	– Reduce parsing
cache	in the shared pool. Heavily used	– Set session_cached_cursors
	during soft and hard parsing,	- cursor_sharing has only minor
	minor use during execute	effect
	Bud and a state that a	
row cacne	Protecting the data dictionary	- Avoid hard parsing
	hard parso	- cursor_snaring works well
		ORACLE

Tuning latch contention						
Latch name	Description	Possible tuning				
cache buffer chain	Protects the hash chains of cache buffers. Oracle9i and later normally doesn't show it.	 Reduce need for buffers Often caused by hot blocks, e index root block 	.g.			
cache buffer Iru chain	Protects the LRU chains of the cache buffers	-Increase db_block_Iru_latches	5			
		C	DRACLE			

SQL*Net events Event name Description Possible tuning SQL*Net more data All but the first of Can indicate slow to/from client multiple packages in networks same direction SQL*Net message Foreground process None, expected high waiting for message from client when e.g. waiting for from client user input ORACLE

Parsing SQL statements

The hard parse does syntax checking

- High CPU cost
- Very high contention for several latches
- A parse is hard when the SQL is not already in the library cache

The soft parse verifies access rights

- Some CPU cost
- High contention for several latches
- A parse is soft, if the SQL statement is already found in the library cache

Application coding - category 2

```
eno = 1234;
parse("select * from emp where empno=:1");
bind(":1", eno);
execute();
fetch();
```

- Uses a bind variable (:1) in stead of literal
- Causes a soft parse for each SQL statement
- Will use the shared SQL area

SQL_TRACE data - recap

PARSE #3:c=0,e=199,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,

- You don't want library cache misses
- During parse this was a hard parse
- During execute the statement was aged out
 - With frequent executes, this is a sign of too small shared pool (ask you DBA for more!)

ORACLE

mis=0 - Number of library cache misses

- parsing)
- Don't expect, that you always know all details

