
Basic Optimization

DB Workshop
for

LHC online/offline developers

CERN January 24-28 2005

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 2

Overview
• 09:00-10:00 Basic Optimization

Dirk Geppert, IT/ADC

• 10:30-12:00 Tuning
Bjørn Engsig, Oracle

• 14:00-16:00+ Hands-on exercises
and Further documentations, tutorials

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 3

Contents
• General remarks
• Execution plan
• Bind variables
• Indexes
• Optimizer
• Analyze data/Statistics
• Good SQL
• Hints
• Example
• Conclusion

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 4

Overview
• Applications must scale to many users
• Many performance problems are not seen

in small environments
• Very good performance can be achieved by

good application coding practice

⇒Try to make the application performant
from the beginning Æ Basic Optimization

⇒If too slow later Æ Performance Tuning

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 5

DBA tuning and User tuning
• DBA tuning is at the instance / OS level,

– by looking at ratios (old school) or wait events (new
trend),

– by inspecting the memory structure (caches) of the
database

– the effect of the database at the operating system
level

• User tuning is at the session / statement level
– Most of the gain can be achieved here!
– No administrative privilege required

• Where is the performance gain?
– Based on experience at CERN

• Bad SQL statements 75%
• Bad application design 20%
• Problems with database parameters 5%
⇒concentrate on user tuning

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 6

Sources of performance problems

• Using too many resources,
such as CPU or disk I/O
– Potential cause of poor response time

(my SQL statement takes too long to execute)
• Waiting for others holding a single

resource, such as a latch
– Potential cause of poor scalability

(adding more CPU doesn’t allow me to run more
concurrent users)

– Causes contention for the resource

⇒Want to avoid these from the beginning!

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 7

The steps for Tuning/Optimization
• Identify what is slow: an application step is

often thousands of lines of code -> intuition,
code instrument, profiling

• Understand what happens in this step,
(execution plan, traces)

• Modify application / data so that it is better,
sometimes it can be as simple as
– Adding an index
– Removing an index
– Changing the definition of an index
– Change the syntax of the select statement

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 8

Time
Design Development Implementation Production

Taking a look at tuning cost and
benefit over time from application
design till full production use

Tuning cost increases in time

Cost

Tuning benefit decreases in time

Benefit

Tuning Cost/Benefit

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 9

Execution plan

• Full Table Scans
• RowID Scans
• Index Scans

– Index Unique Scan
– Index Range Scan
– Index Range Scans

Descending
– Index Skip Scans
– Full Scans
– Fast Full Index Scans
– Index Joins
– Bitmap Joins

• Cluster Scans
• Hash Scans
• Joins

– Nested Loop Joins
– Hash Joins
– SortMerge Joins
– Cartesian Joins
– Outer Joins

• Series of steps that Oracle will perform to execute the
SQL statement
– Generated by the Optimizer
– Describes the steps as meaningful operators - Access

Paths

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 10

Get the predicted execution plan

• SQL command that allows to find out what is the
Query Plan before the SQL statement runs

• Need to access plan_table in the user schema
• explain plan for <statement>;
• Query the contents of the plan_table with

– $ORACLE_HOME/rdbms/admin/utlxpls.sql
– $ORACLE_HOME/rdbms/admin/utlxplp.sql

• Use a tool (e.g. Benthic Golden Ctrl-P)

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 11

Get the real Execution plan
• USE SQL*Plus
set autotrace traceonly explain statistics

for a single statement
• SQL trace is a way to get information of

the execution in a session
– Enable it using

•alter session set sql_trace=true
•alter session set sql_trace=false

– Generates a trace file in the database server
=> usually developer has no access to file
system!

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 12

Execution plan Example
select contact_surname,contact_firstname
from customers

where address2='SYDNEY';
SELECT STATEMENT

TABLE ACCESS FULL CUSTOMERS

select contact_surname,contact_firstname
from customers

where CUSTOMER_ID=1;
SELECT STATEMENT

TABLE ACCESS BY INDEX ROWID CUSTOMERS
INDEX UNIQUE SCAN PK_CUSTOMERS

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 13

Parsing and executing SQL statements

Oracle processes SQL statements:
• parse to verify syntax and access rights of the

SQL statement
• optimize using object information
• execute to actually process data
• fetch in queries to send retrieved data to the

client

SQL> alter session set

2 sql_trace = true;

PARSE #1:c=10000,e=128791,p=0,cr=3,c

EXEC #1:c=0,e=157,p=0,cr=0,cu=0

FETCH #1:c=0,e=479,p=0,cr=1,cu=2

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 14

Parsing SQL statements
The hard parse does syntax checking

– High CPU cost
– Very high contention for several latches
– A parse is hard when the SQL is not already in the

library cache
The soft parse verifies access rights

– Some CPU cost
– High contention for several latches
– A parse is soft, if the SQL statement is already found

in the library cache

Reduce parsing overhead, use Bind variables!

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 15

Application coding
category 1

parse(“select * from emp where empno=1234”);
execute();
fetch();

• Developers not aware of importance of reducing number
of parses
• Uses a literal (1234)
• Causes a hard parse for each SQL statement
• Cannot use the shared SQL area

• Only recommended for DSS type applications
– Decision Support System (such as Data Warehouse)

applications: small numbers of users executing
complex SQL statements with little or no repetition

– Bind variable hides actual value: optimizer does not
have all necessary information to choose best access
plan

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 16

Application coding
categories 2

eno = 1234;
parse(“select * from emp where empno=:1”);
bind(“:1”, eno);
execute();
fetch();

• All steps: cursor open, parse with bind variables,
execute (fetch) and close for each individual SQL
statement

• Opening curser once, and repeatedly subsequent steps:
parse with bind variables, execute (and fetch) for each
SQL statement

• Uses a bind variable (:1) instead of literal
• Causes a soft parse for each SQL statement
• Will use the shared SQL area

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 17

Application coding
category 3

parse(“select * from emp where empno=:1”);
bind(“:1”, eno);
loop

eno = <some value>;
execute();
fetch();

end loop;

• Opening a cursor and parsing with bind variables only
once for each distinct SQL statement, followed by
repeated executes (and fetches for queries)

• Only one single parse
• Efficiently uses the shared SQL area

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 18

Indexes !
• Index can be used to speed up queries and/or to enforce

integrity rules (uniqueness)
• 2 sorts of indexes

– B-tree
– Bitmap
– If cardinality (number of distinct values / number of rows) is low

-> use bitmap indexes
• create [bitmap] index index_name on
table_name(list of columns) tablespace
tablespace_name

• Specify the tablespace
• Add indexes on column(s)!

If not requiring full table scan for some reason!

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 19

Optimizer
• Part of the database kernel that analyzes the

SQL statement and decides the best way to
execute it. Its input are:
– The SQL
– The database design
– Information about the data
– User specific “hints”

• There are two main optimizer modes:
Rule Based and Cost Based

• There are several optimizer targets:
ALL_ROWS (maximum throughput),
FIRST_ROWS (answer starts as soon as
possible)

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 20

Rule versus Cost based optimizer
• Rule: Query plan selected following a set

of predefined rules
– tend to like a lot the indexes…
– Being removed in a future release
– not aware of the new features (partitioning,

bitmap indexes…) Æ Old, NOT recommended
• Cost: Requires correct up-to-date

statistics about your tables/indexes…
– No statistics available Æ RBO is used!
– knows about your data distribution…
ÆNew, the right way to go!

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 21

Statistics gathering
• Analyze operation feeds statistics data into the

dictionary
• It helps the optimizer to choose good execution

plans
• Mandatory if you want to use some of the new

features (ex: bitmap indexes)
• Analyzing the table may solve performance

problems ! (hours -> seconds)
• If the “profile” of the data changes, it is needed

to re-analyze the data.
• Statistics are gathered using

– SQL analyze command
– dbms_stats.gather_<OBJ>_stats()  better!

OBJ e.g. schema, table
scheduled e.g. with dbms_job()

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 22

Example: Analyse data, help the optimiser!
Which customers are also employees?

select c.contact_surname, c.contact_firstname, c.date_of_birth
from employees e , customers c
where e.surname=c.contact_surname
and e.firstname=c.contact_firstname
and e.date_of_birth=c.DATE_OF_BIRTH
SELECT STATEMENT

NESTED LOOPS
TABLE ACCESS FULL CUSTOMERS
TABLE ACCESS BY INDEX ROWID EMPLOYEES

INDEX RANGE SCAN EMPLOYEES_SURNAME

exec dbms_stats.gather_table_stats(tabname=>‘customers‘);
exec dbms_stats.gather_table_stats(tabname=>‘employees‘);

select c.contact_surname, c.contact_firstname, c.date_of_birth
from employees e , customers c
where e.surname=c.contact_surname
and e.firstname=c.contact_firstname
and e.date_of_birth=c.DATE_OF_BIRTH
SELECT STATEMENT

HASH JOIN
TABLE ACCESS FULL EMPLOYEES
TABLE ACCESS FULL CUSTOMERS

7 seconds

0.4 seconds

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 23

Write good SQL, help the optimiser

• The optimiser will try to rewrite the logic
in the statement, but as you know the data
model, you often can do it better!

• For example:
– … where sysdate-column>30 days
is equivalent
… where to sysdate-30>column

– … where person_division<>’EST’
is equivalent to …
… where person_division in (
select division_name from divisions minus
select ‘EST’ from dual)

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 24

Example: Write good SQL, help the
optimiser! (1/2)

Which customers are also employees?
select contact_surname, contact_firstname,
date_of_birth

from customers c
where exists (select 1 from employees e

where e.surname=c.contact_surname
and e.firstname=c.contact_firstname
and e.date_of_birth=c.date_of_birth)

SELECT STATEMENT
FILTER

TABLE ACCESS FULL CUSTOMERS
TABLE ACCESS BY INDEX ROWID EMPLOYEES

INDEX RANGE SCAN EMPLOYEES_SURNAME

9.5 seconds

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 25

Example: Write good SQL, help the
optimiser! (2/2)

select c.contact_surname, c.contact_firstname,
c.date_of_birth

from customers c, employees e
where e.surname=c.contact_surname
and e.firstname=c.contact_firstname
and e.date_of_birth=c.date_of_birth
SELECT STATEMENT

HASH JOIN
TABLE ACCESS FULL EMPLOYEES
TABLE ACCESS FULL CUSTOMERS

0.5 seconds (19 times faster!)

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 26

Hints
• Instructions that are passed to the Optimizer to favor

one query plan vs. another
• /*+ hint hint hint … hint */
• Performance Tuning Guide and Reference manual

– Many different types, e.g. hints for
Optimization Approaches and Goals, Access Paths, Query
Transformations, Join Orders, Join Operations, Parallel
Execution, …

• Our advise: avoid as much as possible!
– complex, not stable across releases
– CBO w/hints same as RBO w/developer setting rules instead of

optimizer!
• Warning: if they are wrongly set, Oracle will plainly

ignore them
– No error condition is raised
– Need to check the query plan to be sure..

select /*+ USE_INDEX(mytable.indx_mix)*/ count(*)
from mytable
where mix = 10

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 27

Most famous – acceptable hints
• ALL_ROWS optimizes for best

throughput
• FIRST_ROWS optimizes for best

response time to get the first rows…
• FULL chooses a full table scan

– It will disable the use of any index on the
table

• INDEX chooses an index scan for the
table

• AND_EQUAL will merge the scans on
several single-column index

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 28

Most famous – acceptable hints
• USE_NL will join two tables using a nested

loop, being the table specified in the hint,
the inner table
– read row on table A (inner table)
– then scan table B to find a match for row

obtained in 1.
– back to 1

• USE_MERGE will join two tables using a
sort-merging
– Rows are first sorted, then the results are

merged based on the join columns

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 29

Example: SQL, indexes and PL/SQL
-- Goal: highest paid persons per department
select e1.department_id, e1.employee_id,
e1.surname, e1.firstname
from employees e1
where salary = (select max(e2.salary) from
employees e2 where
e2.department_id=e1.department_id)

Rows Row Source Operation
------- -------------------------------------

168 FILTER
6401 TABLE ACCESS FULL BIGEMPLOYEES
1318 SORT AGGREGATE

210560 TABLE ACCESS FULL BIGEMPLOYEES

> 216000 rows read in EMPLOYEES full table scan
(table has 6400 rows!)

12.6 seconds, 67025 blocks read (table is 97 blocks!)

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 30

Example: Index
-- create an index on department_id
create index employee_dep_idx
on employees (department_id);

Rows Row Source Operation
------- ---------------------------------

168 FILTER
6401 TABLE ACCESS FULL BIGEMPLOYEES
1318 SORT AGGREGATE

210560 TABLE ACCESS BY INDEX ROWID BIGEMPLOYEES
211219 INDEX RANGE SCAN EMPLOYEE_DEP_IDX
> 216000 rows read in EMPLOYEES full table scan

(table has 6400 rows!)
3.9 seconds, 64028 blocks used (table is 97 blocks!)

Force the usage of the non-unique index
… select /*+ index(e2)*/ max(e2.salary) …

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 31

Example: Concatenated Index
-- create an index on department_id,salary
create index employee_depsal_idx on employees
(department_id, salary);

Rows Row Source Operation
------- ------------------------------------

168 FILTER
6401 TABLE ACCESS FULL BIGEMPLOYEES
1318 SORT AGGREGATE
659 FIRST ROW
659 INDEX RANGE SCAN (MIN/MAX) EMPLOYEE_DEPSAL_IDX

6400 rows read in EMPLOYEES full table scan
(table has 6400 rows!)

1.3 seconds, 774 blocks used (table is 97 blocks!)

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 32

Example: PL/SQL
DECLARE
cursor l_emp_cur is select department_id, surname from employees

order by department_id, salary desc;
l_lastdeptid employees.department_id%TYPE;
l_counter_num number:=0;
BEGIN

for l_emp_row in l_emp_cur
loop

if l_counter_num = 0 or l_emp_row.department_id !=
l_lastdeptid

then
-- first department or the department has changed,
-- this is the highest paid
<output l_emp_row.department_id l_emp_row.surname>
counter := counter + 1 ;

end if;
-- remember the last department_id
l_lastdeptid := l_emp_row.department_id;
end loop;

END;
1 full table scan + sort, 1.1 seconds, 449 blocks used

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 33

Example: Rank
select department_id, employee_id, surname, firstname
from (select department_id, employee_id, surname, firstname,

dense_rank()
over (partition by department_id
order by salary desc nulls LAST) dr

from employees)
where dr <= 1;

Rows Row Source Operation
------- ---------------------------------

168 VIEW
189 WINDOW SORT PUSHED RANK
6400 TABLE ACCESS FULL EMPLOYEES

800 rows read in EMPLOYEES full table scan
(table has 6400 rows!)

1.3 seconds, 98 blocks used (table is 97 blocks!)

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 34

Example, Summary

BlocksTimeMethod

98 (0.1%)1.3s (10%)Rank

449 (0.7%)1.1s (9%)PL/SQL

774 (1.1%)1.3s (10%)Concat

64’028 (95%)3.9s (31%)Index

67’02512.6sFull

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 35

Conclusion
• Good application performance comes from good

application design:
– Avoid parses

• Soft parse also causes scalability problems
– Use bind variables

• But use literals for non-repeated DSS queries
• The SQL rewrite / data definition is, most of

the time, where performance can be acquired.
• You need to understand how the data is

processed.
• There is a tradeoff between the time / effort /

complexity and the gain.

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 36

References & Resources
• oradoc.cern.ch

– Performance Planning manual
– Performance Tuning Guide and Reference manual

• Tom Kyte Effective Oracle by Design
• Efficient use of bind variables, cursor_sharing

and related cursor parameters, Oracle White
Paper, August 2001
http://www.oracle.com/technology/deploy/perfo
rmance/pdf/cursor.pdf

January 26th, 2005 Basic Optimization, Dirk Geppert, IT/ADC 37

Hands-on exercises
• Execution Plan
• Statistics to help optimizer
• Use of Indexes
• Bind Variables
• Tuning example

