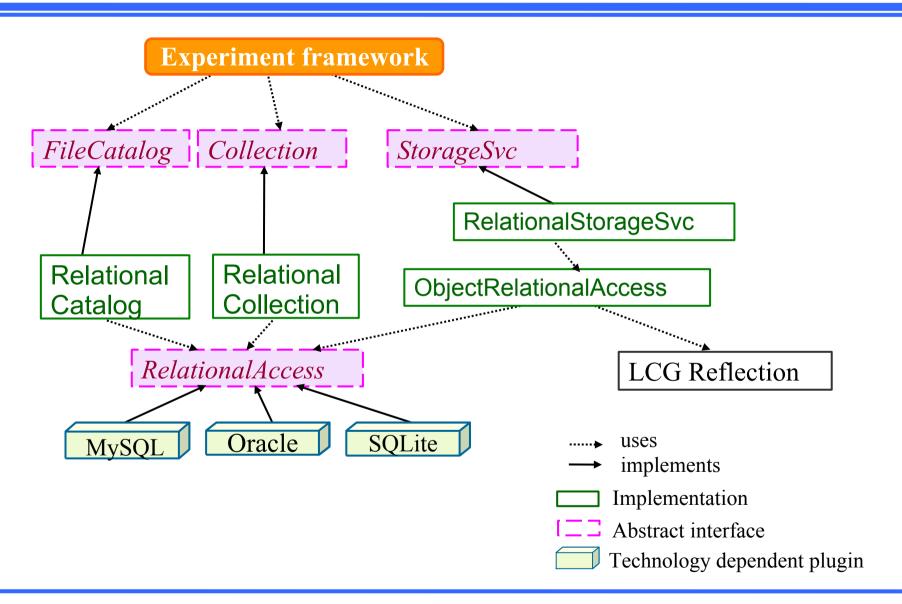


Object Storage into RDBMS through the POOL framework

Ioannis Papadopoulos, CERN IT/ADC

http://pool.cern.ch

January 27th, 2005


Motivation for RDBMS-based object I/O

- On-line configuration/conditions data
 - Present data already written into an RDBMS as C++ objects in the off-line reconstruction/analysis framework
- Off-line conditions/calibration/geometry data
 - Same technology for IoV index and data payload

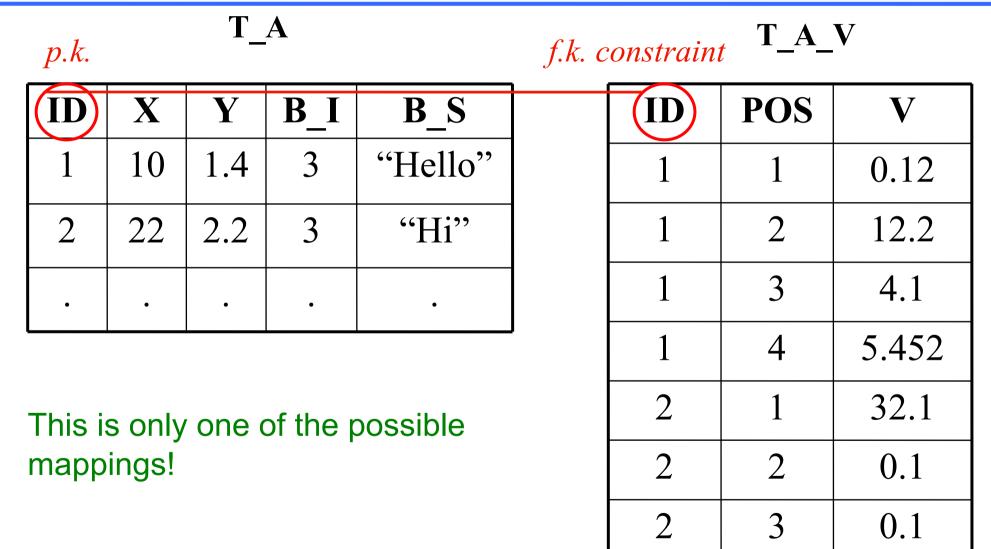
Reminder: RAL in POOL

LCG

Object Storage using RAL and POOL

- ObjectRelationalAccess
 - Bridging the differences between object and relational worlds
 - Connection with the SEAL dictionary
- RelationalStorageService
 - Implementation of the POOL StorageSvc developerlevel interfaces based on the ObjectRelationalAccess package
- Command line tools
 - To accommodate existing schemas and relational data
 - To customize the object view of the relational data (and inversely)

- How to map classes ↔ tables ?
 - Both C++ and SQL allow the description of data layout
 - ...but with very different constraints/aims
 - no single unique mapping
 - need to store object/relational mapping together with object data
- No notion of object identity in RDBMS (persistent address)
 - requires unique index for addressable objects
 - part of mapping definition


A Mapping Example (I)


```
class A {
int x;
float y;
std::vector<double> v;
class B {
  int i;
  std::string s;
} b;
```

A Mapping Example (II)

defining/storing/materializing mappings

- The ObjectRelationalAccess package provides
 - Definition of hierarchy of transient mapping elements
 - Element types: Object, Primitive, Array, Pointer, PoolReference
 - Element : variable type, name, scope, columns, and sub-elements
 - Default object/relational mapping generation
 - Takes care of duplication and lengths of table/column names
 - Persistency of mapping definition
 - Versioning
 - Transient structure stored in three tables
 - Materialization of mapping (schema preparation)
 - Ensures the generation of proper indices and constraints
- Command line tools
 - Customized mapping using an XML driver file
 - Dumping the mapping information into XML files

The RelationalStorageService

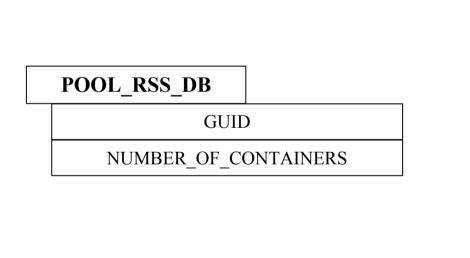
- Designed to make use of the full functionality of the POOL StorageSvc framework
 - Reminder : POOL data hierarchy:
 - Technology domain
 - Database (ROOT or SQLite file, MySQL database, Oracle schema)
 - Container (collection of physically or logically clustered objects)
 - Object ID
- Appears in latest internal releases of POOL
- Supports two minor technologies
 - POOL_RDBMS_HOMOGENEOUS (equivalent to ROOTTREE)
 - POOL_RDBMS_POLYMORPHIC (equivalent to ROOTKEY)

Current capabilities

- Can store objects containing:
 - embedded objects
 - STL containers (nested containment as well)
 - pool::Reference types

• Not yet supported:

- C-arrays
- pointers
- bitsets
- long long (RAL limitation)


Plugins

- Oracle : fully functional
- MySQL, SQLite : functional for objects with up to single level of STL containment

Implementation (I)

- Automatic generation of object/relational mappings
- Protection from concurrent writing through row locking
 - Locking of the container header table rows
 - Locking of the database table row

POOL_RSS_CONTAINERS

CONTAINER_ID

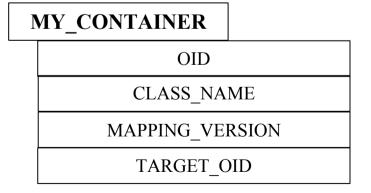
CONTAINER_NAME

CONTAINER_TYPE

TABLE_NAME

CLASS_NAME

MAPPING_VERSION


NUMBER_OF_WRITTEN_OBJECTS

NUMBER_OF_DELETED_OBJECTS

Implementation (II)

- Consistent reading guaranteed using read-only transactions
- Use of bind variables everywhere
- Early preparation and reuse of data buffers
- Homogeneous containers
 - Container table = Top-level table from class mapping
- Polymorphic containers
 - Container table = Table of object headers
 - Target OIDs controlled by "hand-made" sequences

POOL_RSS_SEQ	
NAME	
VALUE	

Implementation (III)

- STL container I/O
 - Makes use of the SEAL dictionary information
 - Writing based on the existence of the "begin" and "size" methods of the container, and the "*" and "++" operators of the corresponding iterator
 - Reading based on the existence of the "insert(elem,pos)" method in every container
 - Special containers (queue, stack) handled through the corresponding underlying containers
 - Dictionary generation requires
 - "---pool" flag switched off
 - declaration of the iterator (and pair in case of maps) classes in the xml file
 - forward declaration of the iterator types
 - Bulk inserts for "leaf" containers when writing
 - Row pre-fetching when reading

The TODO list

- Command line tools for populating POOL containers
 from existing relational data
- Implement general selections (like in ROOTTREE)
- Enable streaming of large arrays into BLOBS
- Handle object identities made of more than a single column :
 - Registered plugins performing transformations from multiple values into a unique unsigned long type

Summary

- Object storage into RDBMS using the POOL storage mechanism has been achieved using the RAL
- Technologically neutral object description in RDBMS is feasible
- The RelationalStorageService is by itself a stress test case for the RAL plugins