
The POOLThe POOL
Relational Abstraction LayerRelational Abstraction Layer

Database WorkshopDatabase Workshop
CERN, January 2005CERN, January 2005

Radovan ChytracekRadovan Chytracek
CERN/IT/ADC CERN/IT/ADC -- LCGLCG



1/27/2005 Radovan Chytracek 2

OutlineOutline

•• IntroductionIntroduction
•• POOL architecture & RALPOOL architecture & RAL
•• FeaturesFeatures
•• ExampleExample
•• Common statusCommon status
•• PerPer--plugplug--in statusin status
•• IssuesIssues
•• New developmentsNew developments
•• ConclusionsConclusions
•• Hands on session infoHands on session info



1/27/2005 Radovan Chytracek 3

•• RAL is addressing the needs of the existing POOL relational RAL is addressing the needs of the existing POOL relational 
components (FileCatalog, Collection), the POOL object components (FileCatalog, Collection), the POOL object 
storage mechanism (StorageSvc) and eventually also the storage mechanism (StorageSvc) and eventually also the 
ConditionsDB (if requested by the experiments).ConditionsDB (if requested by the experiments).

•• Motivation: independence from DB vendorsMotivation: independence from DB vendors
– Various issues with available C++ DB APIs

• Non-standard C++, poor abstraction
– Each vendor has its own native DB API

• Usually C based & very verbose
– Minimal POOL code maintenance costs & flexibility

•• Activity started for most parts only in March 2004.Activity started for most parts only in March 2004.
– Requirements collection & domain decomposition
– Draft project plan

•• The useThe use--cases and requirements are defined and updated in cases and requirements are defined and updated in 
close cooperation with experimentsclose cooperation with experiments

IntroductionIntroduction



1/27/2005 Radovan Chytracek 4

POOL components POOL components 

POOL API

Storage Service File Catalog Collections

ROOT I/O
Storage Svc

XML
Catalog

MySQL
Catalog

Explicit
Collection

Implicit
Collection

RDBMS
Storage Svc

EDG Replica 
Location Service

Relational File
Catalog

Relational
Collection



1/27/2005 Radovan Chytracek 5

in POOLin POOL

Uses

Abstract interface

Implementation

Implements

Technology dependent plug-in

FileCatalog Collection StorageSvc

Experiment framework

RelationalAccess LCG Reflection

ObjectRelationalAccessRelational
Collection

Relational
Catalog

RelationalStorageSvc

MySQL Oracle SQLite



1/27/2005 Radovan Chytracek 6

FeaturesFeatures
•• Abstract, SQLAbstract, SQL--free APIfree API

– With exceptions of WHERE & SET clauses
•• Connection strings storable in a file catalogConnection strings storable in a file catalog

– Example: mysql://raltest/RAL
– Design decision: no connection credentials in the connection 

string
•• Schema, table, constraints & index handlingSchema, table, constraints & index handling

– DDL and meta-data functionality
•• Variable bindingVariable binding

– Named variables syntax supported, e.g. :VARNAME
– ODBCAccess plug-in accepts positional ?-syntax as well

•• Queries against single or multiple tablesQueries against single or multiple tables
– Left joins possible
– Sub-queries (back-end dependent)

•• CursorsCursors
– Scrollable (forward-only in some cases)

•• Bulk insertsBulk inserts
– Emulated if not supported by the back-end client API or server



1/27/2005 Radovan Chytracek 7

Domain decompositionDomain decomposition

•• Database accessDatabase access
– IRelationalService, IRelationalDomain, 

IRelationalSession, IAutheticationService
•• Schema handlingSchema handling

– IRelationalSchema, IRelationalTable, 
IRelationalTableDescription, 
IRelationalTableSchemaEditor, 
IRelationalTableIndexEditor, IRelationalIndex, 
IRelationalPrimaryKey, IRelationalForeignKey, 
IRelationalTablePrivilegeManager, 
IRelationalTypeConverter

– AttributeListSpecification, AttributeList
•• QueriesQueries

– IRelationalQuery, IRelationalSubQuery, 
IRelationalQueryWithMultipleTable, IRelationalCursor, 
IRelationalTableDataEditor, IRelationalBulkInserter

•• TransactionsTransactions
– IRelationalTransaction



1/27/2005 Radovan Chytracek 8

POOLContext::loadComponent("POOL/Services/XMLAuthenticationService" );
POOLContext::loadComponent("POOL/Services/RelationalService" );

seal::IHandle<IRelationalService>
serviceHandle = POOLContext::context()->

query<IRelationalService>("POOL/Services/RelationalService");

IRelationalDomain& domain = serviceHandle->
domainForConnection("mysql://raltest/RALTEST");

std::auto_ptr<IRelationalSession>
session(domain.newSession("mysql://raltest/RALTEST"));

session->connect();

session->transaction().start();
session->userSchema().dropTable( "DataTable" );
session->transaction().commit();

Example Example -- ConnectionConnection



1/27/2005 Radovan Chytracek 9

Example Example –– Create TableCreate Table

session->transaction().start();

std::auto_ptr<IRelationalEditableTableDescription>
desc( new RelationalEditableTableDescription( log, domain.flavorName()));

desc->insertColumn("id", AttributeStaticTypeInfo<int>::type_name());
desc->insertColumn("x", AttributeStaticTypeInfo<float>::type_name());
desc->insertColumn("y", AttributeStaticTypeInfo<double>::type_name());  
desc->insertColumn("c", AttributeStaticTypeInfo<std::string>::type_name());

IRelationalTable&
table = session->userSchema().createTable( "DataTable", *descr );

session->transaction().commit();



1/27/2005 Radovan Chytracek 10

Example Example –– Insert DataInsert Data
session->transaction().start();

IRelationalTable& table = session->userSchema().tableHandle("DataTable");

AttributeList data( table.description().columnNamesAndTypes() );

IRelationalTableDataEditor& dataEditor = table.dataEditor();

for ( int i = 0; i < 5; ++i ) {
data["id"].setValue<int>( i + 1 );
data["x"].setValue<float>( ( i + 1 ) * 1.1 );
data["y"].setValue<double>( ( i + 1 ) * 1.11 );

std::ostringstream os; os << "Row " << i + 1;
data["c"].setValue<std::string>( os.str() );

dataEditor.insertNewRow( data );
}

session->transaction().commit();



1/27/2005 Radovan Chytracek 11

Example Example -- QueryQuery
// Querying : SELECT * FROM DataTable WHERE id > 2
std::auto_ptr<IRelationalQuery> query( table.createQuery() );
query->setRowCacheSize( 5 );

AttributeList emptyVarList;
query->setCondition( “id > 2”, emptyVarList );

IRelationalCursor& cursor = query->process();

if(cursor.start()) {
while(cursor.next()) {
const AttributeList& row = cursor.currentRow();
for( AttributeList::const_iterator iCol = row.begin();iCol != row.end(); ++iCol ) {
std::cout << iCol->spec().name() << " : " << iCol->getValueAsString() << "\t";

}
std::cout << std::endl;

}
}

std::cout << “Selected row(s):" << cursor.numberOfRows() << std::endl;

session->transaction().commit());
session->disconnect();



1/27/2005 Radovan Chytracek 12

Common StatusCommon Status
•• The latest is POOL release The latest is POOL release POOL_2_0_0POOL_2_0_0--iotaiota

– First RAL components available since POOL 1.7.0
•• Base interfaces definedBase interfaces defined

– Strictly following requirements
•• Oracle, ODBC/MySQL and SQLite plugOracle, ODBC/MySQL and SQLite plug--insins

– Native MySQL 4.1.xx development in progress
– Unit-tested & stressed by ObjectRelational StorageService

•• AuthenticationService implementations available:AuthenticationService implementations available:
– XML and shell environment based

•• Proof of concept RelationalFileCatalog implementedProof of concept RelationalFileCatalog implemented
– tested with Oracle, SQLite and MySQL servers

•• First implementation of RelationalCollectionFirst implementation of RelationalCollection



1/27/2005 Radovan Chytracek 13

Oracle plugOracle plug--inin

•• Oracle plugOracle plug--inin
– Uses Oracle OCI C API
– Based on Oracle 10g

• Supports connection to 9i and 10g servers
• Makes use of the “binary_float” and “binary_double” SQL 

types

– Can be used with the Oracle 10g instant client
•• StatusStatus

– Fixed all known bugs and introduced CLOB 
support



1/27/2005 Radovan Chytracek 14

SQLite plugSQLite plug--inin

•• Flat file database engineFlat file database engine
– Tiny memory footprint
– Understands most of SQL-92
– Easy to use API

•• First implementation based on SQLite First implementation based on SQLite 
version 2version 2
– File size and variable binding issues

•• Now based on SQLite version 3Now based on SQLite version 3
– File size went down by factor of 2
– Real variable binding implementation in progress



1/27/2005 Radovan Chytracek 15

MySQL StatusMySQL Status

•• MySQL access is via ODBCMySQL access is via ODBC
– ODBC-based implementation
– Native implementation now would run into 

maintenance problems as MySQL API is 
changing through versions 4.0 to 4.1 to 5.1 

– Until 5.1 is out POOL access to MySQL via the 
more generic ODBC plug-in will be maintained

•• Uses UnixODBC + MyODBC 3.51Uses UnixODBC + MyODBC 3.51
– Native ODBC manager on Windows

•• Tested against MySQL 4.0.18+Tested against MySQL 4.0.18+
•• MySQL server requirementsMySQL server requirements

– InnoDB and ANSI SQL mode are required to 
keep the RAL semantics



1/27/2005 Radovan Chytracek 16

IssuesIssues

•• Nested queries problems with ObjectRelational Nested queries problems with ObjectRelational 
StorageServiceStorageService
– SQLite & MySQL/ODBC (under investigation)

•• CLOB trap when using bulk insertsCLOB trap when using bulk inserts
– ‘\0’ bytes nor white spaces truncated by MySQL for 

TEXT columns
– to be fixed in MySQL & checked for Oracle plug-in

•• MySQL 4.0.x InnoDB does not scale well over 10MySQL 4.0.x InnoDB does not scale well over 1066

entriesentries
– Perhaps due to single shared table space file
– We’ll see in 4.1.7 where table space-per-table is possible
– TEXT column type to be used with care

• Storage overhead + slow query speed



1/27/2005 Radovan Chytracek 17

New DevelopmentsNew Developments
•• Will review soon the existing interfacesWill review soon the existing interfaces

– Extension of the table description interface (column size)
– Support of BLOB types and “long long”

•• After input from LCG 3D project we plan toAfter input from LCG 3D project we plan to
– Add client monitoring support
– Add Connection pooling
– Add Database service registry
– Improve authentication mechanism

•• MySQL 4.1.7 native plugMySQL 4.1.7 native plug--in in trial (work in progress)trial (work in progress)
– Still no cursors in 4.1 (workaround needed)
– binary protocol & variable binding (big plus)
– Easy migration with MyODBC 3.53 for MySQL 4.1.7

• Available by end of January 2005
•• RelationalCollectionsRelationalCollections

– First prototype is available
– Testing and integration with real collection data (ATLAS)

•• ODBCAccess plugODBCAccess plug--in rein re--factoringfactoring
– Allow support for more RDBMs: Oracle, PostgreSQL
– Most of the points of variability already analyzed
– Low priority



1/27/2005 Radovan Chytracek 18

ConclusionsConclusions

•• We did We did it, facing the aggressive schedule it, facing the aggressive schedule ☺☺
– Coding started in March – full implementations by now

•• Oracle plugOracle plug--in works in all casesin works in all cases
•• SQLite & MySQL plugSQLite & MySQL plug--ins in 99%ins in 99%
•• All backAll back--ends heavy stressed by POOL ends heavy stressed by POOL 

ObjectRelational StorageServiceObjectRelational StorageService
– see the next talk by Ioannis Papadopoulos

•• RAL successfully used in implementation across all RAL successfully used in implementation across all 
POOL application domainsPOOL application domains
– File catalog, Collections, StorageService

•• Our Thanks to CMS developers and ATLAS Our Thanks to CMS developers and ATLAS 
geometry database team for close collaboration geometry database team for close collaboration 
and useful feedbackand useful feedback



1/27/2005 Radovan Chytracek 19

RAL Hands on sessionRAL Hands on session

•• 5 exercises5 exercises
– Simple session demonstration
– Schema listing example
– Create table
– Fill table
– Query table data

•• Type “make” to get info how to build & runType “make” to get info how to build & run
•• Have a look at the README fileHave a look at the README file

– To be uplodaed to the workshop page soon ☺

•• Have fun!Have fun!


