:LCG

Conditions Database

Andrea Valassi
(CERN IT-ADC)

1 Database Workshop for LHC Developers 27-Jan-2005

Outline

- QOverview
- Work plan, manpower, status

- Software details

Apologies: I will not cover any database internal details
Some other time, after the software is released and stable @

2 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

What are conditions data? Lcc

- Non-event detector data that vary with time
- And may also exist in different versions

* Data producers from both online and offline
- Geomeftry, readout, slow control, alignment, calibration...

- Data used for event processing and more
- Detector experts
- Alignment and calibration
- Event reconstruction and analysis

* Other presentations for fewer, or more, details
- 3D Workshop presentation
- October AAM presentations
- CHEP presentations

3 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

About the “"common” project... sLEc

- Somewhat challenging to identify common requirements

Reading the XML BLOB Storing Atlas high
containing the LHCb voltages from PVSS
calibration data valid into MySQL whenever
for the event processed ; : the values change

AT (every few seconds)
Retrieving the POOL

alignment object for
the run processed

© KUKUXUMUSU

Regis‘rer'(ing that the CMS
detector geometry ina

set of Oracle tables is . . .
valid for 2008 and 2009 Reading Alice alignment from the

ROOT files for the run processed

4 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Commonalities? Project goals and non-goals sLEc

.

Project non-goals (experiment-common, not conditionsDB-specific)
- Generic C++ access to relational databases (— POOL project: RAL)

- Generic relational database deployment and data distribution (— 3D project)
* Integration with data distribution infrastructure, however, is a project goal

Project goals (experiment-common, conditionsDB-specific)

- Common software and tools for non-event time-varying versioned data
* You will need to work a lot to customize the common solution to your needs!
* Central coordination of activities inside each experiment is a necessity

Project non-goals (experiment-specific)
- Specific data models for calibration/geometry/.. (— experiments)

- Specific payload format encoding (— experiments)
 That is to say: how you use relational databases, RAL or POOL is up to you!
- Specific time encoding and other conventions (— experiments)

5 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

o Overview - first phase of the project
7 (Dec 2003-Oct 2004)

:LCG

LCG integration of existing Oracle and MySQL packages
- Latest release CONDDB_0O_2_0 in July
- Atlas test beam data taking using the Lisbon MySQL API and implementation
- Main problems: lack of development manpower and divergence of two packages

In parallel: coordinate discussion about new API, software and tools
- Review limitations of current APT and software
- Collect new user requirements

Decision to start a new implementation taken at the AAM mid-October
- Work plan circulated beginning of November
- First two milestones due in December and the next one last week

6 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Original "common API"

.

+ Designed to handle data "objects” that
- Can be classified into /independent data items
- VARY WITH TIME
- May have different versions (for given time and data item)

A “CondDBObjegt"

[-
F 9
LEiT -:‘i‘ I'n:\-rrTT- I_R;: u.; rﬁll l:_'!:!----.I_'I'--:IIB-'.L Wl ;Inr_:_'i- T #1 Tae T=rl
- MeTadGTG: :J;Eﬁrl-l-::f:l‘ ézu:r.;-;\-:-hhuﬂ:rbem By

* Data item identifier
- Start-of-time-validity
+ End-of-time-validity

RUAL calbiiame Time
- Version number seat i _
- Data "payload": / - | |
- Encoded as BLOB/string Data ltem o Pere Mato (Feb 2000)

Flgure 1 The thies axes lor idemifying umiquely sach daia fem in the condibion database

7 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Atlas-Lisbon API extensions

+ Support for data payload other than BLOBs
- "ICondDBTable" interface for user-defined data fields
- ICondDBTable "with ID" for improved data item addressing

» Support for “online” data not requiring versioning
- Measured (temperature) rather than computed (alignment)

* MySQL implementation of extended API
- Useful tools built above extensions (PVSS, data browser)
- Used for Atlas test beams and integrated with Athena

8 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

_ Why a new software implementation? ft':c:c

CondDBOracle: poor performance and missing functionalities
- Bulk insertion and retfrieval missing in key points of the code: very slow!
- No user defined data payload (only BLOBS)
- No online mode (only versioned data)

CondDBMySQL: improvements necessary in the API and schema
- Cleaner APT: whole table vs. individual row (object); schema vs. data
- Unified approach to schema and code for online and versioned conditions data

Minimize differences between Oracle and MySQL implementations
- Use the same data model and schema to simplify data copy across backends
- Address new user requirements (eg user tags, HVS) using a unified approach
- Minimize duplication of effort, factor out common code whenever possible

Maximize integration with and reuse of LCG software (SEAL/POOL)
- Utilities (Time, Attributelist), Plugin management, RAL, POOL integration...

9 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

New software - overview Leg

Single implementation for Oracle/MySQL using RAL
- Strictly the same relational schema for both back-ends
- Direct implementations (MySQL, OCCT, ...) may always come later

User-defined data payload modeled by POOL AttributeList
- Support for simple types (int, float, bool, string) of various precisions
- Support for BLOB data type as just one of many possible data types

Support both versioned data and online non-versioned data
- Start with online data (simpler), then focus on offline (main use case)

10 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Data payload: typical use cases

Payload inside channelID | since | till | (tag) | pressure |temperature
the CondDB

NB If BLOBSs are really Large,

Conditions Database
“core” responsibility

Plugin-specific responsibility
(may be experiment-specific)

Inline | would move them outside
attribute the relational database
Inline channelID | since | till (tag) | BLOR
BLOB >
I Example:
channelID | since | #ill | (fag) | blobID biobID | aLoB | | XML interpreter
Referenced > } >
BLOB FK 1
.. *9)
Payload outside » ; :
channelID | since | till ta POOL string token | IR
the CondDB (fag) g e
I poor | xxxxxxxxxxxx
PooL I XXX BooL file
I €, J
channelID | since | till (tag) | FK1 | FK2 I PK1
=
FK U Fx
|
|
|

11 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Work plan and manpower ELEG

2005 work plan will depend on user priorities and manpower
- Present workplan (NovO4 - Feb05) focuses on Atlas March timescales

Active manpower
- Andrea Valassi (IT) - coordination
- Sven A. Schmidt (ATLAS) - core development
- Antoine Perus (ATLAS) - performance testing

Additional manpower?

- ATLAS: Nuno Fiuza da Barros (Atlas integration), Vakho Tsulaia (HVS?),
Andrea Formica (Atlas integration?), ...

- LHCb: Marco Clemencic and Nicolas Gilardi (LHCb integration?)

- CMS: Ricky Egeland (PVSS?), Michael Case (CMS integration?), Lee Lueking
(FroNTier?)

- Users and experiment integration developers are important

12 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Work plan (November 2004 - February 2005) *'-':‘:G

.

Milestone 1 (December 3) - Andrea V. and Sven A. Schmidt
- Online data: single object insertion/retrieval with Attributelist data payload

Milestone 2 (December 17) - AV and SAS
- Online data: bulk insertion/retrieval

Milestone 3 (January 21) - Antoine Perus
- Online data: performance comparison with Lisbon CondDBMySQL

Milestone 4 (February 12) - AV, SAS, AP
- Offline data: versioning and HEAD tagging

Next steps (still missing features)

- Core software: partitioning, tag extensions, HVS, concurrent tests, other
platforms, data cloning, out-of-line data, non-int64 keys, channel attributes...

- Tools and components: PVSS manager, POOL handler, data browser, data copy...

13 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Status Lc G

Milestone 1 (December 3) - OK! (AV and SAS)
- Online data: single object insertion/retrieval with AttributelList data payload

- Additional problems/limitations:
* 64-bit integers (validity keys) not yet in AttributelList/RAL: use 32-bit for now
* BLOBs not yet in AttributeList/RAL: use strings (<4000 or 255 char) for now

Milestone 2 (December 17) - OK! (AV and SAS)
- Online data: bulk insertion/retrieval
- Additional problems/limitations: as above, plus need some cleanup

Milestone 3 (January 21) (AP, AV and SAS)

- Promising results from first comparison with CondDBMySQL (up to 200k rows)
+ Writing faster in COOL Oracle/MySQL than CondDBMySQL (but not strictly linear)
* Reading faster in CondDBMySQL by ~ one order of magnitude

- Further understanding and optimizations are necessary (SQL? ODBC? ...?

Milestone 4 (February 12) - will be late (versioning/tagging software)
- SAS and AV also got involved with performance studies (higher priority)

14 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

@ New software - first prototype
4 COOL (COnditions Objects for Lcg)

:LCG

Infrastructure: SCRAM, single platform so far (rh73_gcc323)

Tight integration with SEAL
- COOL database service is a SEAL service (dynamically loadable plugin)
- Use SEAL logging, exceptions, Time, int64...

Two packages

- CoolKernel (public APT)
- Compile time dependency on SEAL SealBase and POOL AttributeList
* API design tries to improve on both original and Lisbon APT
- RelationalCool (implementation using POOL RAL)
 Compile time dependency on SEAL SealServices and POOL RelationalAccess
* Runtime loading of POOL OracleAccess/ODBCAccess/SQLiteAccess (on demand)

- Separate classes for ?eneric 'Relational’ implementation and 'Ral'-specific DB access
(foresee the possibility to reuse the same schema for direct MyS&L/ OCCT access)

- HVS entities factored out in class and schema (only structure: no versioning yet)
- Database implementation issues

+ The Oracle execution plan for each operation is tested to ensure indexes are used

* Bind variables and bulk operations are used whenever possible

« Each user operation offered by the APT is encapsulated within one transaction

15 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Example - bootstrap EI.EG

Foreword for all examples
- The API and implementation code is all enclosed in "namespace cool { }*
- The APT includes "typedef boost:ishared_ptr«xxx> xxxPtr" for all xxx

Bootstrap: dynamically load the RalDatabaseSvc
- Option 1: from an existing SEAL Context (seal::Context™ context)

context->component<seal::ComponentLoader>()->load
("COOL/KernelServices/RalDatabaseSvc");

seal::THandle<cool::IDatabaseSvc> dbSvcHandle =
ctx->query<cool::IDatabaseSvc>("COOL/KernelServices/RalDatabaseSvc");

cool::IDatabaseSvc& dbSve = *(dbSvcHandle->get());
- Option 2: standalone (if SEAL/POOL is not used anywhere else)

cool::IDatabaseSvc& dbSvc =
cool::RalDatabaseSvcFactory::getDatabaseService();

The IDatabaseSvc can then be used to create, open, drop databases

16 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Example - database access LCG

Database identification via a single URL-like string (std::string dbId)
- One "COOL conditions database” corresponds to

* Logically, a single hierarchy of folder sets and folders (a single root folder set "/*)

* Physically, a set of tables with the same prefix within a single schema (Oracle user
schema or MySQL database) accessed via a (possibly different) authenticated user

- Only the convention to retrieve a single "bootstrap” table is hardcoded in C++: all other
table names are stored and retrieved from the database itself

- Oracle:
dbId="oracle://devdb9;schema=US;user=US;password=PW;dbname=COOLTEST";
- MySQL:
dbId="mysql://atlobk01;schema=US;user=US;password=PW;dbname=COOLTEST";

Use the IDatabaseSvc to create, open, drop databases
dbSvc.dropDatabase(dbId);
cool::IDatabasePtr db = dbSvc.createDatabase(dbId, ..optional attributes...);
cool::IDatabasePtr db = dbSvc.openDatabase(dbId);

17 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Example - folder access 'LCG

Create an “online” folder with user defined payload specification
pool::AttributelistSpecification payloadSpec;
payloadSpec.push_back("I","int");
payloadSpec.push_back("S" "string");
payloadSpec.push_back("X" "float");
cool::IFolderPtr folder = db->createFolder

("/a/b/c/myfolder”, payloadSpec, cool::FolderVersioning::ONLINE, true);

Retrieve an existing folder
cool::IFolderPtr folder = db->getFolder(“/a/b/c/myfolder”);

Drop an existing folder
db->dropFolder("/a/b/c/myfolder");

New API: IFolderPtr is used to access the individual conditions objects
- Each folder handle is a manager of the data in the folder (see next slide)

18 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Example - single object insertion il-':c:c

.

Store a single object
- In"online" mode, check that since(IOV # N) > till (IOV # N-1)
- Special case: if til/ (IOV # N-1) == +infinity, set it equal to since(IOV # N)

pool::Attributelist payload(payloadSpec);

payload["I"].setValue<int>(1);

payload["S"].setValue<std::string>("Object 1");

payload["X"].setValue<float>(0.001);

folder->storeObject(0, 10, payload, 1); // since = O, till = 10, channel# = 1
folder->storeObject(10, cool::IValidityKeyMax , payload, 1); // till = +infinity
folder->storeObject(20, 30, payload, 1); // set previous till to 20
folder->storeObject(5, 25, payload, 1); // EXCEPTION: 5 < 30 (last IOV)

- Type (since, till) : IValidityKey (typedef'ed to seal::LonglLong for now...)
- Type (channel) : IChannelId (typedef'ed to unsigned long for now...)

19 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Example - single object retrieval il-':c:c

.

Retrieve a single object (NB: no concept of tag yet)
- Retrieve an object from a folder at a given validity point in a given channel

cool::IObjectPtr object = folder->findObject(5,1); // time = B, channel# =1
- Retrieve the full object payload as an Attributelist
pool::AttributeList payload = object->payload();
- Retrieve individual payload items as true types (wrapper for user convenience)
int i = object->payload<int>("I");
string x = object->payload<string>("X"); // EXCEPTION: "X" is a float
string s = object->payload<string>("S");
- Retrieve individual payload items as strings (wrapper for user convenience)
string i = object->payload("I");
string x = object->payload("X");
string s = object->payload("S");

20 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Example - bulk object insertion iI-EG

Store many objects in bulk
pool::Attributelist payload(payloadSpec);
payload["I"].setValue<int>(1);
payload["S"].setValue<std::string>("Object 1");
payload["X"].setValue<float>(0.001);
folder->setupStorageBuffer(); // Enable bulk insertion
folder->storeObject(O, 10, payload, 1); // Cache in C++ class memory
folder->storeObject(10, cool::IValidityKeyMax, payload, 1);
folder->storeObject(20, 30, payload, 1);
folder->flushStorageBuffer(); // The SQL is issued here in one transaction

21 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Example - bulk object retrieval il-':c:c

Retrieve a horizontal iterator over the objects (bulk retrieval)

- Inonline mode (just like in a tag), only one IOV is valid at any given time
- Eventually this method will be used to browse horizontally within a tag

cool::IObjectIteratorPtr objectIterator =
folder->browseObjectsInTag // SQL bulk retrieval in one transaction
(",1,5,25); // Tag = *" (only online option), channel# = 1, within [5,25]
objectIterator->goToStart();
while(objectIterator.hasNext()) {
cool::IObject object = objectIterator->next(); // In-memory loop

}

- Implementation detail: presently the iterator is a wrapper to a vector
* ALL data from the query are bulk-retrieved immediately in one transaction
- Eventually, need to split this up intfo many network round trips in many fransactions

* Query on object insertion time and folder creation tfime may be used to select
consistent state across different transactions (objects are never deleted)

22 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

Feedback on RAL and Attributelist fl-':c:ﬁ

.

Excellent support from the RAL team (thanks!)
- Sufficiently easy and intuitive to use if you have experience with SQL C++ APIs

RAL performance within COOL is being investigated
- Performance for writing data better than CondDBMySQL, no real issue so far

- Read performance: COOL optimizations needed, some issues with Attributelist
* No difference observed between MyISAM and InnoDB; any penalty from ODBC?

Issues with RAL (and AttributelList)
- Need RAL/Attributelist support for long long (high priority)
- Need RAL/Attributelist support for BLOBS (void™ buffer, length)
- ORA-01466 observed in READ ONLY ftfransaction: better use SERTALIZABLE?
- Wish RAL extensions for CLOBS (length of a string to store)
- Wish RAL/AttributelList support for DATE and RAL interface fo SYSDATE()

Issues with AttributelList

- A few issues (bugs) in copy constructors and assignment operators

* Due to coexistence of AttributelListSpecification reference’ and 'boost shared
pointer' “flavours": suggestion is to get rid of reference and keep only boost pointers

23 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

“Hierarchical versioning” LCG

TileAlignment in t=[0,2], version 7

(tag TILEALIGN-00)

)

Symbol

HVS Conditions DB

[]
@
LA

Branch Nede (Directory) Folder Set
Leaf Node (Structure) Folder
Structure Element IOV

Two ways to store the association of
"ALIGN-02" and the "TileAlignment in
[0,2], version 7" IOV:
1. Store directly the association between the
IOV and the "ALIGN-02" tag; although
"ALIGN-02" is assigned to all IOVs

tagged as "TILEALIGN-00°, the
association is lost

2. Store the association between the IOV and
the local "TILEALIGN-00" tag; then store
the association between the "ALIGN-02”
and "TILEALIGN-00” tags

In the Conditions Database context

1. Previous Conditions Database tagging
(analogous to CVS): “global tags”

2. Hierarchical versioning: “local tags”

Originally designed and currently used for the Atlas Detector Description (Vakho)

Scope of application to the Conditions Database: folder set tag management
- The association of IOVs to tags within their folder is unchanged

24 Andrea Valassi IT-ADC

Conditions Database 27-Jan-2005

Conclusions 'LCG

Development of new COOL software is proceeding well
- A few weeks behind schedule
- Pending issue: int64 and BLOBs need to be supported in AttributelList and RAL
- The development plan aims to make this usable by Atlas in March

Work plan for 2005 depends on user priorities and available manpower
- Feedback, suggestions, experiment requirements are welcome...

25 Andrea Valassi IT-ADC Conditions Database 27-Jan-2005

