
1

Oracle Database
Architecture Overview

Bjørn Engsig
bjorn.engsig@oracle.com

This one day course is intended to give people with good technical
background and preferably some knowledge of Oracle an introduction to the
architecture of Oracle.

The following topics are covered:
•Oracle components

•The database
•The instance

•Oracledata processing
•Queries
•Data manipulation
•Read consistency

•Oracle SQL processing
•Hands on

•Create your own database
•Start/stop the instance

3

Objectives
Give experienced developers a quick technical
overview of the Oracle Server
Prepare attendees well for further training and/or
reading
Make developers aware of proper application design
Understand how the Oracle Server fits well into
modern three tier application design as well as
traditional client/server

4

Broad view of components
An Oracle Database

– What is in my database files?
An Oracle Instance

– What is running on my server?
Data processing

– How does Oracle process data?
SQL processing and client interfaces

– How does Oracle deal with SQL?
Summary so far
What else is there?

– How do other features fit in?
Hands-on: Create your own database

Agenda

5

Broad view of components
An Oracle Database
An Oracle Instance
Data processing
SQL processing and client interfaces
What else is there?
Hands-on: Create your own database

Agenda

Initially, we will take a broad view of the components with Oracle as a black
box and with some connections to it.

6

Broad view of components

Oracle server

Application Server

Traditional Client

IPC or network
connections

The broad view of an Oracle Server and the related components show:

The Oracle Server itself, which is were the database resides. In this picture,
the server is simply considered a “black box”, which most of the rest of this
presentation looks inside.
Systems connected to the Oracle Server. This can be either traditional

clients, directly connected to the server, or it can be Application Servers,
which run some application code, and to which clients connect (not shown).
In this entire presentation, the term client is used throughout, as the
behaviour of a traditional clients and an application server is the same, when
seen from the database server.,
Connections, which are some mechanism by which different processes can
communicate. In practice, this is either physical network connections, often
using TCP/IP, or it can be some inter process communication, e.g. using Unix
pipes, when the client and the database server are actually executing on the
same computer. In this presentation, there is no explicit distinction between
a connection over a physical network, and one using inter process
communication.

7

Oracle Server components

System Global Area

Background Processes

An Oracle
Instance

Data files

The Oracle
Database

Looking into the Oracle server, two major components are seen:

• The Oracle Database, which is the set of operating system files, where the application’s actual
data are stored (such as customers, orders and order lines), together with Oracle’s own internal
information (such as information about users registered in the database, or tables found in the
database). The Oracle Database as such, cannot be directly accessed in any way (except for
backup) by clients. In contrast to other systems, there is no correlation between the concept of a
user, an application or a file system and an Oracle database; rather, there is often only one
database on each server, and you can even have a single database spanning multiple servers.
This is known as Oracle Real Application Clusters.
• The Oracle Instance, which is a set of memory and process structures, running on a specific
computer. This is the point of access for clients, and the instance is responsible for translating
the SQL calls given by the client, to acual data transfers to and from the database stored in the
operating system files. An Oracle instance is normally associated with an Oracle database, and
those two together make up the Oracle Server. However, an Oracle instance may exist without
being associated with an Oracle database; this is e.g. the case before the database is created or as
an intermediate step during the startup of the Oracle server. An instance cannot be associated
with more than one database, but one database (on a set of physical disks), can be associated with
multiple instances (each on a separate computer), if the actual hardware configuration allow
multiple computers to concurrently access a single set of disks.
• Inside the instance, two important parts are seen: The System Global Area (or SGA), which is a
shared memory segment, typically of a size, which is roughly half of the physical RAM available
on the computer. There is no direct access from clients to the SGA. Additionally, there is a set
of background processes, which are working indirectly on behalf of the clients to do various
specialized tasks, such as clean-up. These background processes are directly attached to the
SGA, and can directly read and write to the disk files making up the database.

8

Broad view of components
An Oracle Database

– Tablespaces and data files
– Contents of data and index blocks
– Data types

An Oracle Instance
Data processing
SQL processing and client interfaces
What else is there?
Hands-on: Create your own database

Agenda

The next part takes us into the black box, to the part where your real database
is stored. The database is really made up of a number of files.

9

The Oracle Database

Data_x

Data_2

Data_1

Data_3

System Tablespace

Application’s
Tablespace (s)

… more tablespaces

All data of the database are stored in Tablespaces, which can be viewed as
logical disks. Each tablespace is made of one or more physical disks, and
can have sizes from megabytes to terabytes.
Oracle uses a set of standard tablespaces, including the system tablespace,
which is where Oracle stores its own internal information about e.g. users,
tables and columns. Additionally, there are standard tablespaces used for e.g.
temporary storage, etc. Only the tablespace with the actual name, system, is
found right after database creation, other tablespaces, including the system
related ones, are created subseequently.
Each application (or set of related applications) define one or more
tablespaces for storing that application’s data. The names of these can be
chosen freely, and can e.g. reflect application type such as manufactoring,
finance, or you can have tablespace names reflecting use such as appl_data,
and appl_index.

10

Oracle data files

ben@aragorn B1 /home/ben $ ls -l /dev/raw/*.dbf

crw-rw---- 2 root dba ... /dev/raw/system.dbf

crw-rw---- 2 root dba ... /dev/raw/temp.dbf

crw-rw---- 2 root dba ... /dev/raw/undom.dbf

crw-rw---- 2 root dba ... /dev/raw/users.dbf

SQL> select tablespace_name tbspc,file_name,

2 bytes from dba_data_files;

TBSPC FILE_NAME BYTES

---------- -------------------- ----------

SYSTEM /dev/raw/system.dbf 628097024

UNDOTBS /dev/raw/undom.dbf 158334976

USERS /dev/raw/users.dbf 628097024

In this case, you see an example of a database on Unix, that happens to be
stored using Unix raw devices. The filenames of the datafiles can be listed
using an operating system command, and they can be seen using a query
against the database itself.

11

Logical and Physical Storage
Data SegmentData Segment
Index SegmentIndex Segment
LargeLarge ObjectObject SegmentsSegments
etc.etc.

SegmentSegmentSegmentSegment
DatafileDatafile

TablespaceTablespace

DatabaseDatabase

S..S..Segment1Segment1

DatafileDatafile--11
TablespaceTablespace

DatafileDatafile--22

Ex
te

nt
Ex

te
nt

Ex
te

nt
Ex

te
nt

..egment2..egment2

Ex
te

nt
Ex

te
nt

Ex
te

nt
Ex

te
nt

blockblock
…

Tablespaces are the logcal storage media of an Oracle Database. Each
tablespace contains data from one or more segments, such as the rows of a
table, or the index of a table, and each segment, is made up of one or more
extents.
The picture shows a tablespalce, that is made up of two physical data files.
There are two segments shown, the yellow one (lightest grey) is made up of
three extents, and the pink (medium grey) contains four extents. These could
e.g. be a table and one of its indexes. The remaining part of the tablespace
are unused blocks.
A segment, including an initial extent, is created when you create an object,
such as a table or an index, and more extents are added as necessary, when
data is inserted.
Extent size can be controlled at the tablespace level, for each segment
individually, or by explicitly allocating an extent of a certain size. Normally,
extent sizes are controlled by Oracle, using a bitmap of all used and free
extents. Alternatively, extent size and allocation can be managed by the
database administrator.
Note, there is not a one-to-one mapping between tables or indexes and
datafiles, although you can specify, that a specific table is the only one stored
in a specific tablespace.

12

Contents of an Oracle Data Block

HeaderHeader

Free spaceFree space

DataData

All data is stored in Oracle blocks, the size of which are defined when the
database is created. Typical sizes are 4kb, 8kb, or 16kb.
Each block contains a header, which includes a directory of rows, and it
includes the actual data. Space management can be applied by the database
designer and/or database administrator to control the amount of free space in
each block, that is used to insert new rows or to update existing rows.

13

Contents of a row of a relational
table

DatabaseDatabase
blockblock

Row headerRow header
Column lengthColumn length
Column valueColumn value

Each row of a table is stored in the database block. The row storage includes
a header and subsequent colun length/column data pairs. A row is
completely identified by its rowid which consists of database file number
(mapped to file name), block number in that file, and row number within the
block.
The header of the data block contains, among other things, a directory of
rows in the block.

14

Oracle Data Types

Character data types
– char(N), nchar(N)
– varchar(N), nvarchar(N)
– varchar2(N), nvarchar2(N)

Number data type
– number(p,s)

Date/time data types
– date
– timestamp

Raw data type
– raw(N)

Large object types
– clob, nclob
– blob
– bfile

Row identifier
– rowid

Stores file#, block# and
row#

Oracle data types are:
char, nchar - Fixed length character string, maximum 2000 bytes, but only
recommended for smaller strings.
varchar, varchar2, nvarchar, nvarchar2 - Variable lenght character string,
maximum 4000 bytes. The “2” types are currently identical to the normal types, but
the latter may change with an evolving SQL standard.
number - Variable lenght numbers, scale and precision can be specified. The datatype
is 100% identical on all Oracle platforms, which would not be the case with native
types such as integer, or float. When declaring tables, native types are mapped to
corresponding number types. The maximum precision is 38 decimal digits, and the
maximal range is at least ±10125.
date - Fixed length date (7 bytes) with second resolution.
timestamp – Date and time with variable resolution (up to nano-seconds) and
potentially with timezone information
rowid - Row identifier, guaranteed to be unchanged during the lifetime of a row. Each
row in each table is uniquely identified by a rowid, which contains file#, block# and
row# (the details a sligthly more complicated)
raw - Raw binary data, maximum 2000 bytes, can be indexed.
clob, nclob, blob- Text or binary large objects, maximum 4Gb, cannot be indexed.
The normal text datatypes (i.e. without “n”) are stored in the database character set,
which must have the first 127 ASCII characters (or all printable EBCDIC characters) at
their usual location; this is e.g. the case with the variable length Unicode character set.
The text datatypes with “n” (nchar, nvarchar(2), nclob) are stored in the database’s
national character set, which can use any character set e.g. fixed width multi-byte
character sets. If the client and the server use different character sets, the underlying
interface will translate between them.
Extensive implicit or explicit data conversion is possible

15

Oracle Data Types

Collection types
– varray
– table

User defined types
Reference type

– ref

Depreceated types
– long
– long raw

In the object relational model, the following extra data types are available
table, varray - Collections, i.e. table (unordered) or varying arrays (ordered)
of other types.
user defined types - Records of scalars or other types
ref - References to objects
For compatibility with older versions of Oracle, the following are supported
but depreceated:
long – Character type with up to 2GB length
long raw – Raw binary type with up to 2GB length

16

Tables in Oracle

RegularRegular
tabletable

PartitionedPartitioned
tabletable

001 005

segments

Tables in Oracle can be stored in three different ways:
Ordinary tables are stored with all rows in no particular order, this makes up
one segment (with potentially many extents). In most cases, one or more
indexes will be used as well.
In Partitioned tables, rows of the table are stored in different segments (and
typically also different tablespaces) depending on a partition key, e.g. one
partition per month of data or one partition per geographical region. This is
typically used with very large databases (100+ Gb), and does e.g. allow
database administrators to backup (and recover) parts of a table at different
times.
Index organized tables are described in a few slides

17

Ordinary indexes

Index entry header
Key column length
Key column value
ROWID

Root

Branch

Leaf

Index entry

Ordinary indexes are binary an contains one or more levels of branch blocks
(the top one being the root), and one level of leaf blocks. Each index entry
stores a header, the actual column values and a rowid pointing at the data
block. In case of an index organized table, the rowid part is replaced by the
full row of the table.

Indexes may also be partitioned, like tables

18

Index organized table

Index entry header
Key column length
Key column value

ROWID replaced by remaing columns

Table entry
...

In index organized tables, an index (typically the primary key index) and the
rows of the table are stored together, and in stead of the ROWID, all tables of
the column are found. This implies a faster access using the index. Multiple
indexes can still be used with this table storage.

19

Contents of a row of an object
table

DatabaseDatabase
blockblock

Object headerObject header
Attribute lengthAttribute length
Top level attribute valueTop level attribute value
OIDOID
ROWID

OID index

Objects in object tables are stored like rows in ordinary relational tables. The
top level attributes of the object are stored as columns, with the addition of
the (hidden) OID column containing a 16 bytes object id.
The OID index, which is always present, indexes the (hidden) 16 byte OID
column.
Alternatively, the OID consists of an existing primary key of the table in
which case the primary key index is used as the OID index.

20

Bitmapped indexes

<Blue, 1000100100010010100>

<Green, 0001010000100100000>

<Red, 0100000011000001001>

<Yellow, 0010001000001000010>

keykey bitmapbitmap

Table

Index

In a bitmapped index, the index tree contains (compressed) bitmaps rather
than rowid’s. Each bitmap lists all rows that have the indexed column
identical to the index value. Bitmapped indexes are good for low-cardinality
columns, i.e. columns where only few different values exist.

21

Broad view of components
An Oracle Database
An Oracle Instance

– Use of shared memory
– Connecting to the server
– Starting and stopping an instance

Data processing
SQL processing and client interfaces
Summary so far
What else is there?
Hands-on: Create your own database

Agenda

The second major part of the black box is the Oracle instance, which is a set
of memory and processes running on the database server.

22

Oracle Server components

System Global Area

Background Processes

An Oracle
Instance

Data files

The Oracle
Database

Looking into the Oracle server, two major components are seen:

• The Oracle Database, which is the set of operating system files, where the application’s actual
data are stored (such as customers, orders and order lines), together with Oracle’s own internal
information (such as information about users registered in the database, or tables found in the
database). The Oracle Database as such, cannot be directly accessed in any way (except for
backup) by clients. In contrast to other systems, there is no correlation between the concept of a
user, an application or a file system and an Oracle database; rather, there is often only one
database on each server, and you can even have a single database spanning multiple servers.
This is known as Oracle Real Application Clusters.
• The Oracle Instance, which is a set of memory and process structures, running on a specific
computer. This is the point of access for clients, and the instance is responsible for translating
the SQL calls given by the client, to acual data transfers to and from the database stored in the
operating system files. An Oracle instance is normally associated with an Oracle database, and
those two together make up the Oracle Server. However, an Oracle instance may exist without
being associated with an Oracle database; this is e.g. the case before the database is created or as
an intermediate step during the startup of the Oracle server. An instance cannot be associated
with more than one database, but one database (on a set of physical disks), can be associated with
multiple instances (each on a separate computer), if the actual hardware configuration allow
multiple computers to concurrently access a single set of disks.
• Inside the instance, two important parts are seen: The System Global Area (or SGA), which is a
shared memory segment, typically of a size, which is roughly half of the physical RAM available
on the computer. There is no direct access from clients to the SGA. Additionally, there is a set
of background processes, which are working indirectly on behalf of the clients to do various
specialized tasks, such as clean-up. These background processes are directly attached to the
SGA, and can directly read and write to the disk files making up the database.

23

System Global Area

Shared pool

Library
cache

Data
dictionary

cache

Buffer cache

SGA

The large shared memory segment, the SGA, contains the following major
components:
The buffer cache, which is a cache of disk blocks, very similar to the file

system cache found in most operating systems. Blocks are always read and
written in sizes of the Oracle Block Size, which is defined, when the database
is created.
The shared pool, which contains two main components:

The library cache, which is a cache of SQL statements, etc.
The dictionary cache, which caches Oracle own internal information,
such as information about users and tables.

As a very rough rule of thumb, the buffer cache and the shared pool, which
by far are the largest of the SGA, will each make up little less than half the
total SGA size.
Other parts of the SGA contain information about currently running
processes, locks, etc.

The use of some of the background processes will be explained later.

24

Connecting a client to the server

Instance
SGA Shared pool

Library
cache

Database
buffer
cache

Data
dictionary

cacheServerServer
processprocess

Database

ClientClient

The client process runs in its own address space (actually as its own
operating system process, quite often on a separate computer), completely
separated from the Oracle Instance by the network or the inter process
communication. Hence, the client cannot attach to the SGA, and cannot read
or write to the database files.
The server process, which executes SQL statements sent from the client
process, executes within the address space of the SGA, and within the
priveledge space of the database, and can hence get and modify information
in the SGA, and can read and write to the database files.
Full security is guaranteed by the Oracle security mechnisms and the SQL

language.

25

Startup and control of Oracle

ServerServer
processprocess

SQL*PlusSQL*Plus
Instance

SGA Shared pool

Library
cache

Database
buffer
cache

Data
dictionary

cache

Database

SQL> connect sys/sys_password

SQL> startup spfile=spfileXX.ora

SQL> connect sys/sys_password

SQL> startup spfile=spfileXX.ora

spfileXX.ora

Right after system startup, only the Oracle database will exist; the instance
will not be running. To start the instance, a user with DBA authority
connects to a server process using either the sqlplus utility or a GUI tool such
as Oracle Enterprise Manager. The utility will connect to a server process,
which will get the startup command and read a parameter file. This file has
information about different things such size of the buffer cache and the
shared pool, and about the maximum number of processes to start. The
server process then creates the SGA and starts the necessary background
processes.
On Unix systems, this is typically done in a system startup script, such as
/etc/rc, and on Windows NT, this is done as a service.

26

Sample startup
parameters

db_name = XX

db_block_size = 8192

db_block_buffers = 2000

shared_pool_size = 30000000

max_sga_size = 2G

log_buffer = 64K

processes = 50

java_pool_size = 20000000

During startup of the Oracle instance, a parameter file is read, specifying
information on how to configure Oracle. Some, but not all, of the parameters
can later be modified at runtime either at the system level for the complete
instance, or at the session level for a specific session.

27

Creating a database

ServerServer
processprocess

SQL*PlusSQL*Plus

Database

SQL> connect sys/pwd as sysdba

SQL> startup nomount

SQL> create database ...

SQL> connect sys/pwd as sysdba

SQL> startup nomount

SQL> create database ...

Instance
SGA Shared pool

Library
cache

Database
buffer
cache

Data
dictionary

cache

On the previous slide, you saw how to start an instance when the database
already exists – this slide shows the opposite: Creating a new database when
only the instance exists. Initially, you start an instance that is not associated
with a database, using ’startup nomount’. The nomount option tells the
server process, that it should create the SGA and the background processes,
but not attempt to mount an actual database. Once the instance is running,
you can run the ’create database’ command to actually create the initial set of
database and redo log files.

28

Broad view of components
An Oracle Database
An Oracle Instance
Data processing

– How does Oracle process data?
SQL processing and client interfaces
Summary so far
What else is there?
Hands-on: Create your own database

Agenda

The following slides show how data flows through Oracle when you retrieve
data, or when you modify data in the database.

29

Dataflow during data retrieval

Instance
SGA

Database
buffer
cache

Shared pool

Library
cache

Data
dictionary

cache
ServerServer

processprocess

Database

1
ClientClient

3

24

During queries (SQL select statements) data is found in the actual database, i.e. in the
database files, and the server process, that is connected to the client together with the
other parts of the Oracle instance is responsible for executing the SQL statement, getting
data from the database and sending these to the client.
The major steps in this are:
1. The SQL statement is looked up in the library cache part of the SGA. If it is not
already there, it will have to be parsed first.
2. The blocks containing the data to be retrieved, including e.g. index blocks, are
identified in the buffer cache part of the SGA.
3. If the blocks do not exist, free buffers are found in the buffer cache, and the necessary
blocks are read from the database files.
4. The information in the blocks are decoded into rows and columns, which are sent to
the client.
There are some important things, that should be noted:

•Oracle uses caches at different places to ensure good performance of repetitive things.
For the buffer cache, this is very much like an operating system file buffer cache; the
behaviour and use of the library cache will become clear later.
•The actual reading of data from the database files into the buffer cache is done by the
server process. We shall see later, that writing of data is done by one of the background
processes.
•The physical (on disk) storage of data is not seen by the client, which simply receives
rows with columns of data as expected.

30

Dataflow during data
manipulation

ABC
DEF

ServerServer
processprocess

Database

File

Redo Log

File
block#: DEF

Buffer Cache

Log Buffer
Log WriterLog Writer

ProcessProcess

1

3

2 4

5

During processing of a data manipulation statement (DML, i.e. SQL insert, update or delete), the
basic processing is like for queries. I.e. handling of SQL and the library cache is the same.
A new element is now identified in the SGA: the log buffer. The log buffer logs all changes made
to the buffer cache, so that these changes can be redone in case of a recovery. The processing steps
are:
1. The block, that needs to be modified is read from the disk (unless it is already found in the
cache)
2. The server process (on behalf of the SQL statement executed by the client), makes an entry into
the log buffer, specifying the operation to be done on the data block; in case of a later recovery, the
redo information is needed. The picture shows that the redo log entry indicates which block is
being updated (it is actually more than simply a block number), and it shows the actual change. No
information is logged about the previous value in the block, as this information is not needed to
redo the operation.
3. The server process makes the actual change in the block in the buffer cache. In the picture, the
value “ABC” is replaced by the value “DEF”. At this point in time, the block in the buffer cache is
different from the block in the datafile; this is called a dirty block.
4. The user issues the commit operation, and the server process indicates this to the log writer
background process. This process is part of the Oracle instance, and is started when the instance
starts.
5. The log writer process writes the log buffer to a redo log file. At this time, in case of recovery,
the old block, found in the database file, and the redo log record, found in the redo log file, can be
used to redo the change made by the user.
New conecpts introduced:
• The redo log buffer, which is found in the SGA is used to store log information between an actual
update and the coresponding commit. The typical size is up to a few hundred kilobytes.
• The log writer background process, often abbreviated to LGWR, which writes the redo log buffer
to the redo log files.
• The redo log files, which is where Oracle stores log records necessary for recovery. Typical sizes
are up to a few hundred megabytes or in very high-transaction systems, a few gigabytes.

31

The need for undo information

Database

File

Redo Log

Fileblock#: DEF
redo

Log WriterLog Writer
ProcessProcess

ClientClient

update..
rollback ?

undo

2

ABC
DEF

ServerServer
processprocess

1DEF
ABC

3

data

The previous slide showed the processing during normal DML operations, i.e. where the
client eventually commits the operation. However, clients may want to undo the operation
by performing a rollback in stead of the commit, and the simple picture does not show this.
On this slide, the details of undo processing is shown.
1. Before doing the actual modification of the data block, information necessary to undo
the operation is written into an undo block, which is also found in the buffer cache.
2. The redo log information is written to the redo log buffer.
3. The actual data block is modified. In order to reconstruct the data block to its state
before the modification, the information in the rollback block can be applied to the
modfied block.
Important points
Note the duality of the two words “redo” and “undo”. Rollback, which is the normally
used word, is synonymous with undo, which is frequently used in Oracle internal
documents.
The undo blocks are actually part of an undo tablespace, which are created and managed
by the database administrator.
The undo tablespace is system controlled; but they the actual undo blocks are stored in
database files just like ordinary table and index blocks, and the undo blocks are cached in
the buffer cache of the SGA. In releases before Oracle9i, the undo blocks were found in
rollback segments that were managed by the database administrator; database migrated
from previous releases may still contain these rollback segments, but all new databases
will (should) use undo tablespaces.
The modification of the undo block (step 1 above) is actually logged in the redo log buffer,
just as the modifcation of the actual data block.

32

Read Consistency

ABC

undo

Modified
data

ABC
DEF

DEF
ABC

ABC
DEF

DEF
ABC

ABC+ =

select ...

1

32

4
Read consis-
tent data

The undo (rollback) information, that was discussed on the previous slide, is
used in other cases, besides an actual rollback operation from the client. In
the scenario above, some user has updated the block with “ABC” into
“DEF”, which is actually changed in the data block and registered in the
undo block as rollback information. Concurrently, some other user is
performing a query.
1. A user is performing a query, which reads blocks in the buffer cache.
2. A block is read, which is too new, i.e. it is modified after the start of the
query. Hence, to get a consistent read for the query, this block cannot be
used.
3. The information in the undo-block is applied to a copy of the modified
block, with the effect that a block with the original block contents is
constructed.
4. The query uses this consistent read copy of the block and continues.

This behaviour is fully automatic and cannot be switched off, so Oracle
guarantees consistency for all queries.

33

Read Consistency

Time

Client 1 Client 2 Client 3

update ...

select ...

select ...

commit

Client 4

select ...

1

2

3

4
5

The behaviour of the read consistency model is described further in this slide:
1. A user, client-2 is starting a query at time-1. The read consistency model ensures a consistent
view of data during the entire run of the query, which is a snapshot of the database taken at the
time the query starts.
2. The user, client-1 executes an update operation (which still may be either committed or rolled
back).
3. The user, client-3, starts a query. Since the start of the query is before the commit of client-1’s
update operation, client-3 does not see the update done by client-1.
4. At this time, client-1 decides to commit the update. However, since both queries of client-2
and client-3 started earlier than this time, none of the queries will see the update.
5. Client-4 starts a query after the commit of client-1, hence the query started at time-5 does see
the change made by client-1.
Important points:
•The snapshot time of a query is the start time of the query, independent on the time taken to
complete the query.
•Effective timestamp of DML operations (insert, update, delete) is the commit time, and only the
client actually performing the DML operation, is able to see the changes made until commit
time.
•The undo blocks are used by all other clients to reconstruct a read consistent view of data, taken
at the start time of the query.
•Due to the fact, that undo blocks may be needed by queries after the commit of an operation,
undo is not released immediately after commit.
•Undo blocks are in fact managed automatically in circular buffers, which means that undo
information is being overwritten after a certain period of time. As of Oracle9i, this is managed
automatically by the database administrator specfying the time to keep undo information
available.
•If very long running queries (several minutes to hours) are executing at the same time there is a
risk of ageing out necessary undo information for the query. In this case, an error will be
returned to the client. Note, however, that this is far better than using other database systems,
where concurrently running updates and queries are either impossible due to locking, or
errorneous due to queries returning in-consistent results.

34

Writing Data to Disk

Database filesDatabase files

ServerServer
processprocess

ABC
DEF

DEF
ABC

2

1

DatabaseDatabase
WriterWriter

ProcessProcess

As it has been seen earlier, whenever data is changed by a server process on
behalf of a client’s SQL request, the server process makes modifications to
the blocks in the buffer cache, including undo blocks, and writes redo
information to the redo log buffer, which is written to disk by the log writer
process at commit time. This implies that the buffer cache over time will be
filled with modified blocks, so called dirty blocks. These blocks really need
to be written to the database files. This is the mechanism for doing this:
1. Blocks are modfied in the buffer cache, and marked as dirty.
2. At regular intervals, or if no free buffers are found, the database writer
process, abbreviated DBWR, will write dirty blocks to disk. For performance
reasons, writing is done in batches and it will use asynchronous I/O.

35

Writing logs and recovery

Database filesDatabase files
ABC
DEF

DEF
ABC

DBWRDBWR

Redo Log

File 2

LGWRLGWR

Redo Log

File 1
1

2

4

3

This slide shows some details of the way the log writer and the database writer
work together. In general, there are at least two redo log files, and the set of files
are used sequentially; when one fills up, the next log buffer is written to the next
redo log file.
1. The LGWR process writes log buffers to one of the redo log files. The dirty
buffers in the buffer cache are not yet written to the database file, but in case of a
recovery, the old blocks in the database file plus the information in the redo log
file can be used to reconstruct the modified blocks.
2. The redo log file fills up, and should now be made to ready for the next cycle of
redo log writing. This means, that before the current redo log files is being
overwritten, all dirty buffers in the buffer cache must be flushed, so that recovery
of the blocks are not necessary.
3. The LGWR instructs the DBWR, that a flush is necessay, this is called a
checkpoint. The checkpoint must complete before the current redo logfile is being
overwritten.
4. The DBWR executes the checkpoint, which means that all dirty buffers are
being written to the database file.
Important points
A checkpoint, which is a complete flush of all dirty buffers in the buffer cache,
occurs at least whenever a redo log file becomes full. The database administrator
my choose to make this happen more often.
If a checkpoint does not finish before the complete cycle of redo log files, all
operations in the Oracle Server will have to wait for the checkpoint to complete.
If a database crash should occur, the recovery time will be long, if there are many
log records in the log file(s) since the last checkpoint. And conversely: If there a
few log records, recovery time will be fast. The database administrator can
specify that maximum recovery time accepted, and Oracle will make sure
checkpoints occur sufficiently frequently to keep the recover time under the limit.

36

Archiving log files

Database filesDatabase files

DBWRDBWR

Redo Log

File 2

LGWRLGWR

Redo Log

File 1
1

2

ARCHARCH
3

Tape or separate disk

This slide shows the work of the archiver. If you need to be able to recover
from e.g. a disk crash by using an old copy of the database files, all redo
logs created since the old backup, must be available.

1. The LGWR process writes log buffers to one of the redo log files.
2. The redo log file fills up, and should now be made to ready for the next

cycle of redo log writing.
3. The archiver process will take a filled redo log file and copy it to a

different device, either a separate disk (from where it may later be written
to a tape) or directly to a tape.

Important points
The ARCH process is only started when the database is in archive log mode.
When archive log mode is in effect, you can recover from old copies of

database files by applying the archived redo log files.
Archive log mode also allows you to backup the database while it is running.

37

Broad view of components
An Oracle Database
An Oracle Instance
Data processing
SQL processing and client interfaces

– How does Oracle deal with SQL?
Summary so far
What else?
Hands-on: Create your own database

Agenda

The SQL language is used to ”talk” to relational databases like Oracle, and
the following slides show how the Oracle server processes SQL statements.

38

SQL Processing

select * from emp

update emp set …

select ename from emp
where empno=1234

select enane from emp
where empno=5678

insert into emp
values
(123,‘Smith’,’Manager’)

ServerServer
processprocessClientClient

Library (SQL) Cache

parse
– soft parse
– hard parse

execute
fetch

Oracle SQL processing is done in generally three steps via the client/server interface;
SQL statements are sent to the server, are being executed at the server and results are
sent back to the client. For optimization, the number of roundtrips between the server
and the client should be limited, as each roundtrip incurs a network message or a
process switch if the client and the server runs on the same computer.
The parse step
In order for a SQL statement to be executed, is must be found in the Library Cache of
the SGA, and must be prepared for exeuction. This is called the parse step. The SQL
statement is sent to the server, which first tries to identify an identical statement in the
cache; if one is found, a soft parse is executed, which mainly does a verification of
access rights. If the SQL statement is not found, a hard parse is done, which includes
actual parsing and optimization of the statement. The hard parse can be time
consuming, in particular for complex SQL statement, but even relatively simple SQL
statements have a parse overhead, that can (and should) be avoided.
The execute step
After parsing, the client instructs the server to execute the SQL statement. This step
can be repeated, which means that a SQL statement can be parsed once and executed
several times, which may heavily reduce the overhead by parsing.
The fetch step
If the SQL statement is a query, the rows that are the result are sent to the client during
this step.

39

SQL Processing

select * from emp

update emp set …

select ename from emp
where empno=1234

select enane from emp
where empno=:1

insert into emp
values
(:1,:2,:3)

Library (SQL) Cache
integer eno;
string ename(20);
string title(20);

parse(“insert into emp
values (:1, :2, :3)”);

bind (&eno, “:1”);
bind (&ename, “:2”);
bind (&title, “:3”);

eno := 123;
ename := “Smith”;
title := “Manager”;
execute();

In order to reduce the number of parse operations, all SQL statements that are
being used repetitively should use placeholders, also called bind-variables, as
the “:1” in the select statement in the program example above. The example
shows an extra processing step:
The bind step
Any constant in SQL statements, e.g. the ‘1234’ in ‘select * from emp where
empno=1234’ can, and generally should, be replaced by bind-variables,
which are identified by colon followed by a number or a string, e.g. :1, :2,
:abc, etc. In the client program, an actual variable is bound to this bind-
variable, and the actual value of the program variable is then used at execute
time. This means that the execute can be repeated with different values, but
with the same SQL statement; hence, no new parse is necessary.

40

SQL Processing
integer eno; integer dno;
string ename(20);
string title(20);

parse(“select empno,ename,job from emp where dept=:1”);

bind (&dno, “:1”);
define(&eno, 1);
define(&ename, 2);
define(&title, 3);

dno := 10;
execute();
while <still rows> do
fetch(); print(eno, ename, title);

done;

Bind-variable can (and should) also be used with queries as in this example.
Additionally, this example shows the define step:
The define step
For queries, program variables must be available to retrieve the results of the
query during the fetch step. This is done by the define call, which takes
program variable and the number in the select-list as arguments.

41

SQL Processing
integer eno; cursor cur1;
string ename(20);
string title(20);

parse(cur1, “insert into emp
values (:1, :2, :3)”);

bind (cur1, &eno, “:1”);
bind (cur1, &ename, “:2”);
bind (cur1, &title, “:3”);
while <more to do> loop
eno := <some value>;
ename := <some value>;
title := <some value>;
execute(cur1);

end loop;

Use cursors to
avoid parse for
frequent
execution

Typically, applications need to keep track of more than one SQL statement at
a time. This is done using cursors, which can be seen as pointers to SQL
statements.

In the example, a cursor is declared and associated with a SQL statement
using the parse call. After being parsed, the cursor can be executed as many
times as necessary, which avoids any overhead of the parse call.

42

SQL Processing
integer eno; cursor cur1;
string ename(20);
string title(20);
while <more to do> loop
parse(cur1, “insert into emp

values (:1, :2, :3)”);

bind (cur1, &eno, “:1”);
bind (cur1, &ename, “:2”);
bind (cur1, &title, “:3”);

eno := <some value>;
ename := <some value>;
title := <some value>;
execute(cur1);

end loop;

Reasonable for
infrequent
execution only

In this case, only the first parse will be a hard parse, i.e. the Oracle server
will have to do a full parse for syntax and data dictionary information. Each
subsequent execution only does a soft parse, which primarily performs a
verification of access rights. However, even the soft parse has an overhead,
so the above code should only be used if the SQL statement is infrequently
executed.

43

Navigational access to Objects
Top level object typically retrieved via SQL
Using a client side object cache
Navigational access using methods like

– Create persistent object
– Object pin
– Mark object as updated/deleted
– Flush object or cache
– Commit
– Navigate via REF’s (based on OID’s)

Not different from SQL from a processing/transactional
point of view

An Object Relational database store objects, that may contain REFs (or
pointers) to other objects. These REFs are used to navigate through the data,
and the object retrieved during this navigation can be handled in the client
program. The client program controls how objects are retrieved and
managed using a pure navigational approach, although the underlying
processing is very similar to that of SQL. However, only little actual SQL is
used.

44

Broad view of components
An Oracle Database
An Oracle Instance
Data processing
SQL processing and client interfaces
Summary so far
What else?

– Real Application Clusters
– Streams

Hands-on: Create your own database

Agenda

The following slides will list some further Oracle features, and explain how
they are built

45

Summary
Instance

SGA Shared pool

DBWR LGWR ARCH

Database

Data files
Redo log

files

UserUser
processprocess

ServerServer
processprocess

Parameter
file

Understanding of the slides so far will assist in understanding many other
Oracle concepts. This is a brief overview:

•An Oracle server is centered around the shared memory area, SGA (System
Global Area), that among other things contains a cache of database blocks, a
cache of SQL statements, and a cache of information about tables, columns,
etc.
•The Oracle database is your real data, stored on disk. Important extra
information, such as the redo log used for recovery and other purposes is also
stored on disk.
•A number of background processes, each with a specific purpose, are
running. Examples are processes responsible for writing data to the database
files or the redo log files. The actual set of background processes depends on
various configuration settings, and newer Oracle versions typically have
more background processes.
•Each client or user process connected to the instance is served by a server
process; these are occasionally called foreground processes to distinguish
them from background processes.

46

Important terminology

Database
– your real data stored in files

Instance
– processes and memory that makes the database available

Background process
– processes that are always running and doing work in the

background such as writing to database files
Foreground process

– Server processes that are running when a session is connected
to the instance, and that actually do the work of your SQL
statements

47

Terminology

DML
– Data Manipulation Language, i.e. SQL statements that

modify data, such as insert, update, delete
DDL

– Data Definition Language, i.e. SQL statements that
change the database, such as create table

Query
– SQL statement the get data from the database, i.e.

select statements

48

What Else?

Everything else is created using the building
blocks of the previous slides
Background processes (like DBWR, LGWR)

– Different processes for each specific use
– Log archiving, job scheduling, monitoring, etc. etc.

Database and redo files
– Can be stored differently (e.g. Automatic Storage

Management)
– Can be used for other purposes (e.g. Streams)

The following slides show some examples of technology and features, that
are built at extensions to the technology shown previously. You will see how
features like Real Application Clusters are implemented by add extra
background processes responsible for specific tasks, and you will see how a
feature like Oracle Streams is using information already available.

49

Real Application Clusters

Database

Data files
Redo log

files

Instance
SGA Shared pool

LGWR DBWR ARCH

Instance
SGA Shared pool

DBWR LGWR ARCH

Redo log
files

ServerServer
processprocess

ServerServer
processprocess

In Real Application Clusters, there are multiple instances (normally one per
database server node) serving a single database. The single database is stored on a
set of disks, that are shared between all instances.

The slide shows some of the characteristics of Real Application Clusters:

•All files are shared between all instances, this includes database, redo log,
parameter files, etc. There is only one set of database files, i.e. there is a single
database, that just can be seen from multiple nodes/instances. Each instance
actually has it’s own set of redo log files, but they are shared and visible to all
instances. This is e.g. used in case of recovery after loss of an instance.
•The instances are on separate nodes and do therefore not share any memory. All
coordination between the instances take place of the interconnect (thick, red arrow).
•A client and its associated server process can connect to any instance to get access
to the database.
•The picture only shows two instances; many more can be configured.

There are some requirements to the hardware to support Real Application Clusters:

•A shared disk storage must be available; typically this involves using a SAN.
•A high speed interconnect must be available solely for the inter-node
communication. This could e.g. be a Gigabit Ethernet.

50

RAC – important features

The cache becomes global
– Global Cache Management is required

Many locks become global
– Global lock management is required

Number of nodes/instances changes
No single point of failure

– i.e. no master of any resource

51

Real Application Clusters
Instance

SGA Shared pool

LMSLGWR LMDDBWRARCH LMON

Instance
SGA Shared pool

DBWRLGWR ARCHLMONLMS LMD LMS LMD

LMON – Monitor global resources
LMS – Handles cache coherency (cache fusion)
LMD – Handles global enqueues (locks)

In Real Application Clusters, extra background processes are started. Some
of the important ones of these are shown on this slide:

•LMON is responsible for monitoring of all global resources, i.e. global
cache resources and global enqueue (lock) resources. Whenever a node is
added or removed from the cluster, the LMON process will distribute the
global resources on all nodes. In case of a loss of a node, this involves
recovery of global resources from the surviving nodes.
•The LMSn processes actually implement the Oracle cache fusion
mechanism. This makes sure only one node is modifying a block at any one
time, it will send dirty blocks between instances if multiple instances have
block modifications to perform, and it will construct and ship read-consistent
blocks if one instance need to read a block, that has been modified by another
instance.
•The LMDn processes make the enqueues (e.g. row locks) – that in the non-
RAC case is handled internally on one instance – global, so that they can be
seen by all instances.

There are more processes in addition to these.

52

Streams

Redo Log

File 2

LGWRLGWR

Redo Log

File 1

Log buffer

ConsumptionConsumptionStagingStagingCaptureCapture

As we have seen earlier, the log buffer contains a detailed record of all
changes to the database, and is necessary for recovery. Oracle allows you to
use the log for other purposes as well – namely using the streams feature.

This is another example of how the basic architecture is augmented with
extra features. With Oracle Streams, the contents of the log buffer is
captured, possibly staged, and forwarded for consumption at some other
place. In it’s most simple case, this will implement replication, as all
changes done to one database can be copied to another database and applied
at that other database.

53

Broad view of components
An Oracle Database
An Oracle Instance
Data processing
SQL processing and client interfaces
What else is there?
Hands-on: Create your own database

Agenda

62

Q U E S T I O N SQ U E S T I O N S
A N S W E R SA N S W E R S

