
CERN-IT/ADC

25 January 2005

Oracle Tutorials

SQL
Structured Query Language

(1/2)

Giacomo Govi
IT/ADC

SQL (1/2)
Giacomo.Govi@cern.ch

2

CERN-IT/ADC

25 January 2005

Overview

• Goal:
– Learn the basic for interacting with a

RDBMS

• Outline
– SQL generalities
– Available statements
– Restricting, Sorting and Aggregating data
– Manipulating Data from different tables
– SQL Functions

SQL (1/2)
Giacomo.Govi@cern.ch

3

CERN-IT/ADC

25 January 2005

SQL Definition

Structured Query Language
• Non-procedural language to access a relational

database
• Used to create, manipulate and maintain a relational

database
• Official ANSI Standard

SQL (1/2)
Giacomo.Govi@cern.ch

4

CERN-IT/ADC

25 January 2005

SQL as RDBMS interface

SQL provides statements for a variety of tasks,
including:

Data Definition
• Creating, replacing, altering, and dropping objects
Data Manipulation
• Querying data
• Inserting, updating, and deleting rows in a table
Data Control
• Controlling access to the database and its objects
• Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

SQL (1/2)
Giacomo.Govi@cern.ch

5

CERN-IT/ADC

25 January 2005

Available statements

Data Control Language (DCL)GRANT
REVOKE

Transaction Control
COMMIT
ROLLBACK
SAVEPOINT

Data Definition Language (DDL)

CREATE
ALTER
DROP
RENAME
TRUNCATE

Data Manipulation Language (DML)
INSERT
UPDATE
DELETE

Data retrievalSELECT

DescriptionStatement

Rows

Tables/Objects

Manages
DML

SQL (1/2)
Giacomo.Govi@cern.ch

6

CERN-IT/ADC

25 January 2005

SQL & Tools

• SQL statements can be submitted via:
– DB API’s for programming languages (C,

C++, Java, Python, PHP, …)
– GUI applications (Excel, Access)
– stored procedures (PL/SQL, Java)
– Oracle tools (Reports, Forms, Designer…)

• SQL*Plus (Oracle!) is the basic tool to submit
SQL commands (available on all CERN
platforms).

SQL (1/2)
Giacomo.Govi@cern.ch

7

CERN-IT/ADC

25 January 2005

To use SQL at CERN

• Direct connection to the database

i.e. from lxplus
sqlplus user@sid

• Benthic Software

to install it, refer to:
G:\Applications\Benthic\Benthic_license_CERN.html
http://www.benthicsoftware.com/

SQL (1/2)
Giacomo.Govi@cern.ch

8

CERN-IT/ADC

25 January 2005

Datatypes

Each value manipulated by a RDBMS has a
datatype that defines the domain of values
that each column can contain

• When you create a table, you must specify a
datatype for each of its columns.

ANSI defines a common set
• Oracle has its set of built-in types
• User-defined types

SQL (1/2)
Giacomo.Govi@cern.ch

9

CERN-IT/ADC

25 January 2005

Oracle Built-in Datatypes

CHAR (size) fixed-length char array
VARCHAR2(size) Variable-length char string
NUMBER (precision, scale) any numeric
DATE date
TIMESTAMP date+time
CLOB char large object
BLOB binary large object
BINARY_FLOAT 32 bit floating point
BINARY_DOUBLE 64 bit floating point
… + some others

SQL (1/2)
Giacomo.Govi@cern.ch

10

CERN-IT/ADC

25 January 2005

ANSI Data types translation

ANSI data type Oracle
integer NUMBER(38)

smallint NUMBER(38)
numeric(p,s) NUMBER(p,s)
varchar(n) VARCHAR2(n)
char(n) CHAR(n)
datetime DATE

float NUMBER
real NUMBER

SQL (1/2)
Giacomo.Govi@cern.ch

11

CERN-IT/ADC

25 January 2005

NULL value
NULL is a special value that means:

– unavailable
– unassigned
– unknown
– inapplicable

NULL value is not equivalent to
– zero
– blank space

Often used as default

SQL (1/2)
Giacomo.Govi@cern.ch

12

CERN-IT/ADC

25 January 2005

Schema

A schema is a collection of logical structures of
data, called schema objects.

• It is owned by a database user and has the
same name of the user.

• Schema objects can be created and
manipulated with SQL

SQL (1/2)
Giacomo.Govi@cern.ch

13

CERN-IT/ADC

25 January 2005

Schema objects

-Tables
-Indexes
-Constraints
… but also (in ORACLE)
-Links
-Views
-Triggers
-Operators
-Sequences
-Stored functions
-Stored procedures
-Synonyms

…and more

SQL (1/2)
Giacomo.Govi@cern.ch

14

CERN-IT/ADC

25 January 2005

Basic SQL

Aim: be able to perform the basic operation of
the RDBMS data model:

• Create, Modify the layout of a table
• Remove a table from the user schema
• Insert data into the table
• Retrieve data from one or more tables
• Update/ Delete data in a table

SQL (1/2)
Giacomo.Govi@cern.ch

15

CERN-IT/ADC

25 January 2005

Create a table

Define the table layout:
Table identifier
Column identifiers and data types
Integrity/Consistency:

- Column constraints, default values
- Relational constraints

SQL (1/2)
Giacomo.Govi@cern.ch

16

CERN-IT/ADC

25 January 2005

Create (and describe) a table
CREATE TABLE employees (

id NUMBER(4),
surname VARCHAR2(50),
name VARCHAR2(100),
hiredate DATE DEFAULT SYSDATE,
division VARCHAR2(20),
email VARCHAR2(20),
citizenship VARCHAR2(20)

);

Retrieve the table layout:
DESCRIBE employees;
Name Null? Type
--------- ------ ----------
ID NUMBER(4)
...

SQL (1/2)
Giacomo.Govi@cern.ch

17

CERN-IT/ADC

25 January 2005

Using relational model
What’s missing in the previous slide?
Syntax is correct, but we should impose a few more

check to some of the columns:
• id is used to fully identify an employee

- it must always have a value!
- each employee (row) must have a different id

• name and surname must always have a value
• division and citizenship are not expected to accept ANY value…
The application filling the table could check all that…
Actually this is what the RDBMS is supposed to DO!
CONSTRAINT

-> column property defining range of values, relationship with other
column inside the same or other tables

SQL (1/2)
Giacomo.Govi@cern.ch

18

CERN-IT/ADC

25 January 2005

Create a relational table

CREATE TABLE employees (
id NUMBER(4) NOT NULL,

surname VARCHAR2(50) NOT NULL,

name VARCHAR2(100) NOT NULL,

hiredate DATE DEFAULT SYSDATE,

div_id NUMBER(2),

email VARCHAR2(20) UNIQUE,

cit_id NUMBER(3),

CONSTRAINT emp_pk PRIMARY KEY (id),

CONSTRAINT emp_div_fk FOREIGN KEY(div_id)

REFERENCES divisions(id),

CONSTRAINT emp_email_un UNIQUE(email)

);

SQL (1/2)
Giacomo.Govi@cern.ch

19

CERN-IT/ADC

25 January 2005

Object identifiers

Oracle cares about case sensitivity for
quoted identifiers:

employees
"employees“
"Employees"
"EMPLOYEES"
Can reference different objects in the same schema!
employees
EMPLOYEES
"EMPLOYEES"
Reference the same object!

SQL (1/2)
Giacomo.Govi@cern.ch

20

CERN-IT/ADC

25 January 2005

Coding Conventions

• SQL instructions are not case sensitive
• Careful with reserved words!

• Good practice for tables and column names
is to prefix column names with a label from
the table name:

CREATE TABLE divisions(

div_id NUMBER(4) NOT NULL,

div_name VARCHAR2(50) NOT NULL

);

SQL (1/2)
Giacomo.Govi@cern.ch

21

CERN-IT/ADC

25 January 2005

Alter table

Modify the name:
ALTER TABLE employees RENAME TO newemployees;

Modify the layout:
ALTER TABLE employees ADD (salary NUMBER(7));

ALTER TABLE employees RENAME COLUMN div_id TO
dep_id;

ALTER TABLE employees DROP (hiredate);

But also:
• Add/modify/drop constraints
• Enable/Disable constraints
• Modify more advanced properties…

SQL (1/2)
Giacomo.Govi@cern.ch

22

CERN-IT/ADC

25 January 2005

Drop table

Remove the table from the user schema (recoverable in
Oracle10g):

DROP TABLE employees;

->effects: the table is removed (or moved in the recycle bin)
with all its data, and dependencies (indexes, etc…)

Remove the table from the database entirely (Oracle10g):
DROP TABLE employees PURGE;

Remove a table with referential constraints:
DROP TABLE employees CASCADE CONSTRAINTS;

SQL (1/2)
Giacomo.Govi@cern.ch

23

CERN-IT/ADC

25 January 2005

Insert data in a table
Data are added in a table as new rows

Insertion following the table defined layout:
INSERT INTO employees VALUES(1369,‘SMITH’,

TO_DATE(’17-DEC-1980’,‘DD-MON-YYYY`),20,NULL);

Insertion using a DEFAULT value
INSERT INTO employees VALUES (1369, ‘SMITH’,

DEFAULT,20,’john.smith@cern.ch’);

Insertion specifying the column list:
INSERT INTO employees (id, name, div_id, email)

VALUES(1369, ‘SMITH’, 20, ’john.smith@cern.ch’);

Insertion in a table outside the current working schema:
INSERT INTO <schemaname>.employees …

SQL (1/2)
Giacomo.Govi@cern.ch

24

CERN-IT/ADC

25 January 2005

Retrieve the table data (I)

How to query data from one or more tables
Retrieve all data available:

SELECT * FROM employees;

Full table id is needed outside the working schema:
SELECT * FROM <schemaname>.employees …

Retrieve a subset of the available columns:
SELECT id, name FROM employees;

Retrieve the distinguished column values:
SELECT DISTINCT div_id FROM employees;

Retrieve from more tables:
SELECT employees.name,visitors.name FROM
employees, visitors;

SQL (1/2)
Giacomo.Govi@cern.ch

25

CERN-IT/ADC

25 January 2005

Retrieve the table data (II)

Assign pseudonyms to the columns to retrieve:
SELECT name AS emp_name FROM employees;

SELECT id “emp_id”, name “emp_name” FROM
employees;

Columns concatenation:
SELECT name || email AS name_email FROM
employees;

SELECT ‘employee ‘ || name || email FROM
employees;

Treatment of NULL values (NVL operator):
SELECT NVL(email,’-’) FROM employees;

SELECT NVL(salary,0) FROM employees;

SQL (1/2)
Giacomo.Govi@cern.ch

26

CERN-IT/ADC

25 January 2005

Aggregating data

• Data can be grouped and some summary
values can be computed

• Functions and clauses:
– AVG, COUNT, MAX, MIN, STDDEV, SUM,

VARIANCE
– group by clause is used to define the

grouping parameter
– having clause can be used to limit the

output of the statement

SQL (1/2)
Giacomo.Govi@cern.ch

27

CERN-IT/ADC

25 January 2005

Group functions

Data can be grouped and some summary
values can be computed

Retrieve the number of rows:
SELECT COUNT(*) FROM employees;

Retrieve the number of non-null values for a column:
SELECT COUNT(email) FROM employees;

Restrict to distinguished values:
SELECT COUNT(DISTINCT div_id) FROM employees;

Sum/Max/Min/Avg
SELECT SUM(salary) FROM employees;

SQL (1/2)
Giacomo.Govi@cern.ch

28

CERN-IT/ADC

25 January 2005

Set operators

Combine multiple queries
Union without duplicates:

SELECT name, email FROM employees UNION

SELECT name, email FROM visitors;

Union with the whole row set:
SELECT cit_id FROM employees UNION ALL

SELECT cit_id FROM visitors;

Intersect:
SELECT name FROM visitors INTERSECT

SELECT name FROM former_employees;

Minus:
SELECT name FROM visitors MINUS

SELECT name FROM former_employees;

SQL (1/2)
Giacomo.Govi@cern.ch

29

CERN-IT/ADC

25 January 2005

Restricting and sorting data

• Need to restrict and filter the rows of data that are
displayed and/or specify the order in which these
rows are displayed

• Clauses and Operators:
– WHERE
– Comparisons Operators (=, >, < …..)
– BETWEEN, IN
– LIKE
– Logical Operators (AND,OR,NOT)

– ORDER BY

SQL (1/2)
Giacomo.Govi@cern.ch

30

CERN-IT/ADC

25 January 2005

Restricting data selection (I)

Filter the rows according to specified condition
Simple selections:

SELECT * FROM employees WHERE id = 30;
SELECT name FROM employees WHERE NOT div_id =
2;

SELECT name FROM employees WHERE salary > 0;
SELECT * FROM employees WHERE hiredate <
TO_DATE(‘01-01-2000', ‘DD-MM-YYYY');

SELECT name FROM employees WHERE email IS
NULL;

More Conditions (AND/OR):
SELECT * FROM employees WHERE div_id = 20 AND
hiredate > TO_DATE(‘01-01-2000',
‘DD-MM-YYYY');

SQL (1/2)
Giacomo.Govi@cern.ch

31

CERN-IT/ADC

25 January 2005

Restricting data selection (II)

More selection operators
Use of wildcards

SELECT * FROM employees WHERE name LIKE ‘C%’;

Ranges
SELECT count(*) FROM employees WHERE salary
BETWEEN 1000 and 2000;

Selection from a list
SELECT * FROM employees WHERE div_id IN
(4,9,12);

List from an other selection
SELECT name FROM divisions WHERE id IN (SELECT
div_id FROM employees WHERE salary > 2000);

SQL (1/2)
Giacomo.Govi@cern.ch

32

CERN-IT/ADC

25 January 2005

Sorting selected data

Set the order of the rows in the result set:
SELECT name, div_id, salary FROM employees ORDER

BY hiredate;

Ascending/Descending
SELECT name, div_id, salary FROM employees ORDER

BY hiredate ASC;

SELECT name, div_id, salary FROM employees ORDER
BY salary DESC, name;

NAME DIV_ID SALARY

-------------- ------ ---------

Zzz 2 4000

Aaa 1 3000

Bbb 3 3000

SQL (1/2)
Giacomo.Govi@cern.ch

33

CERN-IT/ADC

25 January 2005

Aggregating Clauses

Divide rows in a table into smaller groups:
SELECT column, group_function(column) FROM table

[WHERE condition] GROUP BY group_by_expression;

Example:
SELECT div_id, MIN(salary), MAX (salary) FROM

employees GROUP BY div_id;
• All columns in the SELECT that are not in the group function

must be included in the GROUP BY clause
• GROUP BY column does not have to be in the SELECT
Restrict the groups:
SELECT div_id, MIN(salary), MAX (salary) FROM

employees GROUP BY division HAVING MIN(salary)

< 5000;

SQL (1/2)
Giacomo.Govi@cern.ch

34

CERN-IT/ADC

25 January 2005

Update data in a table

Aim: change existing values in a table
With no clause all the rows will be updated:
UPDATE employees SET salary=1000;

A single result select can be used for update:
UPDATE employees SET salary=(SELECT MAX(salary));

The previous value can be used for the update:
UPDATE employees SET salary=salary+1000;

In order to update a specific row(s), a WHERE clause can be
provided:

UPDATE employees SET salary=5000 WHERE
name=smith;

UPDATE employees SET salary=5000 WHERE div_id=3;

The syntax for the WHERE clause is the same as for the SELECT
statements…

SQL (1/2)
Giacomo.Govi@cern.ch

35

CERN-IT/ADC

25 January 2005

Delete data from a table

Aim: remove existing data from a table
With no clause all the rows will be deleted:
DELETE FROM employees;

In order to delete a specific row(s), a WHERE clause
can be provided:

DELETE FROM employees WHERE name=smith;

DELETE FROM employees WHERE div_id=3;

The syntax for the WHERE clause is the same as for
the SELECT statements…

SQL (1/2)
Giacomo.Govi@cern.ch

36

CERN-IT/ADC

25 January 2005

Manipulating data from more tables

In RDBMS data model, to ensure consistency:
Row idenfication -> Primary Key
Constrained relationship with other table row->

Foreign Key
In general, entries for a given table column might be

related to other table columns…
JOIN:
Retrieve data from more tables defining a condition for

the row association
- Natural usage on foreign key constrained columns

SQL (1/2)
Giacomo.Govi@cern.ch

37

CERN-IT/ADC

25 January 2005

Types of join

Joining data in a table to itselfSelfJoin

It returns also the rows that does not satisfy the join
condition

Outerjoin

The relationship between the columns of the different
tables must be other than equalNon-Equijoin

Values in the two corresponding columns of the
different tables must be equalEquijoin

SQL (1/2)
Giacomo.Govi@cern.ch

38

CERN-IT/ADC

25 January 2005

Equijoin

10CLARK

30BLAKE

10KING
EMP.DIV_IDEMP.NAME

OPERATIONS20

SALES30

ACCOUNTING10
DIV.NAMEDIV.ID

10

30

10

EMP.DIV_ID

ACCOUNTING

SALES

ACCOUNTING

DIV.NAME

CLARK

BLAKE

KING

EMP.NAME

Foreign Key

Primary Key

SQL (1/2)
Giacomo.Govi@cern.ch

39

CERN-IT/ADC

25 January 2005

Outerjoin

10TURNER

20MARTIN

NULLJONES

10CLARK

NULLBLAKE

10KING
EMP.DIV_IDEMP.NAME

OPERATIONS20

SALES30

ACCOUNTING10
DIV.NAMEDIV.ID

Foreign Key
Primary Key

ACCOUNTING10TURNER
OPERATIONS20MARTIN

ACCOUNTING10CLARK

NULL

NULL

10
EMP.DIV_ID

NULL

NULL

ACCOUNTING
DIV.NAME

JONES

BLAKE

KING
EMP.NAME

SQL (1/2)
Giacomo.Govi@cern.ch

40

CERN-IT/ADC

25 January 2005

Join Examples Syntax

Equijoins:
ANSI syntax:
SELECT employees.name, divisions.name FROM employees INNER

JOIN divisions ON employees.div_id=divisions.id;

Oracle:
SELECT employees.name, divisions.name FROM employees,

divisions WHERE employees.div_id=divisions.id;

Outerjoins:
ANSI syntax (LEFT,RIGHT,FULL)
SELECT employees.name, divisions.name FROM employees
FULL OUTER JOIN divisions
ON employees=division.id;

Oracle:
SELECT employees.name, divisions.name FROM employees,

divisions WHERE employees.div_id(+)=divisions.id;

SQL (1/2)
Giacomo.Govi@cern.ch

41

CERN-IT/ADC

25 January 2005

SQL Functions

Oracle provides a set of SQL functions for
manipulation of column and constant values

– Use the functions as much as possible in the where
clauses instead of making the selection in the host
program (it may invalidate the use of an index)

concat, length, lower, upper, trim, substrCHAR

trunc, mod, round, logical comparison, arithmeticNUMBER

to_char, to_number, decode, greatest, least, vsize…others

to_date, to_char, -, +, trunc, months_betweenDATE

FunctionsType

SQL (1/2)
Giacomo.Govi@cern.ch

42

CERN-IT/ADC

25 January 2005

Character manipulation Functions

String concatenation:
SELECT CONCAT(CONCAT(name, ‘ email is '), email)

FROM employees WHERE id = 152;

String length:
SELECT LENGTH(email) FROM employees WHERE

citizenship = 5;

Set the Case (LOWER/UPPER):
SELECT CONCAT(LOWER(name),’@cern.ch’) FROM

employees;

More operators:
TRIM,LTRIM,RTRIM Remove characters from the string start/end
SUBSTR Extract a specific portion of the string

SQL (1/2)
Giacomo.Govi@cern.ch

43

CERN-IT/ADC

25 January 2005

Numeric functions (I)

SQL Function for numeric types (column value or
expression):

ABS(p)
• Returns the absolute value of the column or the expression
CEIL(p)
• Returns the smalles integer greater then or equal to the

parameter value
FLOOR(p)
• Returns largest integer equal to or less than the parameter value
MOD(m, n)
• Returns the remainder of m divided by n (or m if n is 0)
POWER(p, n)
• Returns p raised to the nth power

SQL (1/2)
Giacomo.Govi@cern.ch

44

CERN-IT/ADC

25 January 2005

Numeric functions (II)

ROUND(p,n)
• Returns p rounded to n places to the right of the decimal point

(default n=0)
SIGN(p)
• Returns the sign of p
SQRT(p)
• Returns the square root of p.
TRUNC(m, n)
• Returns n truncated to m decimal places
POWER(m, n)
• Returns m raised to the nth power (default n=0)

More Math functions:
ACOS, ASIN, ATAN, ATAN2, COS,
COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH

SQL (1/2)
Giacomo.Govi@cern.ch

45

CERN-IT/ADC

25 January 2005

Date operation
Functions to form or manipulate a Date datatype:
SYSDATE
• Returns the current operating system date and time
NLS_DATE_FORMAT
• Session Parameter for the default Date format model
ALTER SESSION SET NLS_DATE_FORMAT = 'yy.mm.dd';
TO_DATE(s [,format [,'nlsparams']])
• Converts the character string s (CHAR, VARCHAR2) to a value

of DATE datatype. format is a datetime model format.
ROUND(date,format)
• Returns date rounded to the unit specified by the format model

format
TRUNC(date,format)
• Returns date with the time portion of the day truncated to the

unit specified by the format model format
Other functions:
NEXT_DAY(date,day),LAST_DAY(date)

SQL (1/2)
Giacomo.Govi@cern.ch

46

CERN-IT/ADC

25 January 2005

Other functions
Conversion functions:
TO_CHAR(p,[format])
• Converts p to a value of VARCHAR2 datatype
• p can be character, numeric, Date datatype
• format can be provided for numeric and Date.
TO_NUMBER(expr,[format]))
• Converts expr to a value of NUMBER datatype.
• expr can be BINARY_FLOAT, BINARY_DOUBLE or CHAR,

VARCHAR2 in the format specified by format

More useful functions:
DECODE
VSIZE
GREATEST
LEAST

SQL (1/2)
Giacomo.Govi@cern.ch

47

CERN-IT/ADC

25 January 2005

The DUAL table
Table automatically created by Oracle Database in the

schema of SYS user.
• Accessible (read-only) to all users.
By selecting from the DUAL table one can:
• Compute constant expressions with functions:

SELECT ABS(-15) FROM DUAL;

ABS(-15)

15

• Retrieve some Environment parameters:
SELECT UID, USER FROM DUAL;

UID USER

--------- -------------

578 GOVI

SQL (1/2)
Giacomo.Govi@cern.ch

48

CERN-IT/ADC

25 January 2005

Summary

• What is SQL, for what and how do we use it
• ANSI and Oracle-specific SQL Datatypes
• User’s schema
• Basic SQL for :

- Create, Modify, Delete a table
- Insert data into a table
- Select data from one or more tables with/without
conditions
- Update or delete data from a table

• SQL functions
• The Oracle DUAL table

SQL (1/2)
Giacomo.Govi@cern.ch

49

CERN-IT/ADC

25 January 2005

Documentation

• Oracle SQL: The essential reference
David Kreines, Ken Jacobs
O'Reilly & Associates; ISBN: 1565926978; (October

2000)

• Mastering Oracle SQL
Sanjay Mishra, Alan Beaulieu
O'Reilly & Associates; ISBN: 0596001290; (April 2002)

• http://otn.oracle.com

SQL (1/2)
Giacomo.Govi@cern.ch

50

CERN-IT/ADC

25 January 2005

Questions & Answers

