Diffraction in CC events in H1

Paul Laycock

HERA-LHC Workshop – 17th November

CC Events with a Rapidity Gap

ep →vXY

Analysis Strategy

- Same 1999/2000 data set used for high Q² NC analysis – aim to have simultaneous inclusive and diffractive NC and CC analyses – $\mathcal{L} = 65 \ pb^{-1}$
- Compare inclusive analyses to the published NC and CC analyses of this data set
- Use the same forward detector treatment for both analyses, i.e. use the understanding of the forward detectors from the higher statistics NC analysis

Inclusive Control Plots (1)

Pytho / GeV

Zvitx / can

Rapidity Gap Selection

- $\eta_{MAX} < 3.3$
- $N_{PRT} < 1$
- $N_{FMD}1, 2 < 2$
- N_{FMD} 1,2,3 < 3
- $E_{PLUG} < 3.5 \text{ GeV}$

Monte Carlo	Allowed Phase space
Django	$x_{IP} > 0.15 \parallel M_Y > 5.0$
Rapgap	$x_{IP} < 0.15 \&\& M_Y < 5.0$

Demand the forward detectors of H1 to be empty

Use the understanding of the forward detectors from the higher statistics NC analysis

Diffractive CC Control Plots (5)

CC with Rapidity Gap Sample

- Rapgap able to describe the data
- Photo-production BG is very small

Define cross-sections for $ep \rightarrow vXY$: $Q^2 > 200.0 \text{ GeV}^2$ and y < 0.9 $x_{IP} < 0.05$ $M_V < 1.6 \text{ GeV}$ and $|t| < 1.0 \text{ GeV}^2$

Total cross-section and ratio to inclusive cross-section

Measure the total CC diffractive cross-section to be : $\sigma_{CC}^{diff} = 0.42 \pm 0.13 \text{ (stat.)} \pm 0.09 \text{ (sys.) pb}$

 $ZEUS = 0.49 \pm 0.20$ (stat.) ± 0.13 (sys.) pb

Ratio of diffractive to inclusive ($x_{Bj} < 0.05$): $\sigma_{CC}^{diff} / \sigma_{CC}^{inc} = 2.5 \pm 0.8 \pm 0.6 \%$

 $ZEUS = 2.9 \pm 1.2 \text{ (stat.)} \pm 0.8 \text{ (sys.)} \%$

Differential cross-section in x_{IP}

Differential cross-section in Q²

Differential cross-section in β

Summary

- Inclusive CC is in very good agreement with published
- H1 measurements are in very good agreement with ZEUS
- First differential measurements of the diffractive charged current cross-section
- Find good agreement with Rapgap

Inclusive CC selection

- HV:CJC1,2 LAr,TOF,Lumi,CIP,COP
- Triggers 66, 67, 77 OR 71 with L2TT(15)
- CJC Timing
- |zvtx| < 35.0 cm
- Background finders
- $0.03 < y_h < 0.85$
- $Q_{h}^{2} > 223.0 \text{ GeV}^{2}$
- $P_T^{miss} > 12.0 \text{ GeV}$
- $V_{ap}/V_p < 0.2$
- Anti NC and photo-production cuts

An ep interaction with

large missing P_T

Inclusive Control Plots (1)

Pytho / GeV

Zvitx / can

Inclusive Control Plots (2)

Inclusive Control Plots (3)

Inclusive Control Plots (4)

Total cross-section checks

Total cross-section:

• Cross-check my measured value of the total inclusive cross-section with the published value for $Q^2 > 1000.0$ and y < 0.9:

Published = 19.19 ± 0.61 (stat.) ± 0.82 (sys.) pb

This = 18.51 ± 0.61 (stat.) ± 0.82 (sys.) pb

Systematic uncertainties:

• Cross-checked my values for systematics against published and find good agreement

\rightarrow Inclusive CC analysis reproduced

Inclusive cross-checks example – Photo-production

Photo-production:

- Asked to open up the anti photo-production cuts to check normalisation (removed Vap/Vp and 3D cuts)
- Find 30% uncertainty on the Pythia normalisation, as in paper

Pythia normalisation

Pythia scaled by 0.7, consistent with published CC analysis

Diffractive CC Control Plots (1)

Diffractive CC Control Plots (2)

Diffractive CC Control Plots (3)

Diffractive CC Control Plots (4)

¢_{РШЭНЫ}

Diffractive CC Control Plots (5)

Differential cross-section in x_{IP}

x _{IP}	$d\sigma/dx_{IP}$	δStat	δSys	Acc	Pur	Sta
	/ pb					
0.01	20.69	0.45	0.20	0.33	0.43	0.66
0.03	6.87	0.42	0.31	0.46	0.59	0.91

Differential cross-section in Q²

Q2	do/dQ2	δStat	δSys	Acc	Pur	Sta
	(*10 ⁻⁴) / pb GeV ²					
400.0	8.38	0.45	0.21	0.29	0.53	0.69
800.0	0.76	0.47	0.17	0.61	0.45	0.76

Differential cross-section in β

β	dσ/dβ	δStat	δSys	Acc	Pur	Sta
	/ pb					
0.4	1.25	0.57	0.22	0.21	0.34	0.31
0.65	0.40	0.44	0.22	0.68	0.43	0.71
0.9	0.23	0.53	0.22	1.23	0.36	0.94