HARD DIFFRACTION FROM PARTON RESCATTERING IN QCD Gunnar Ingelman (Uppsala University)

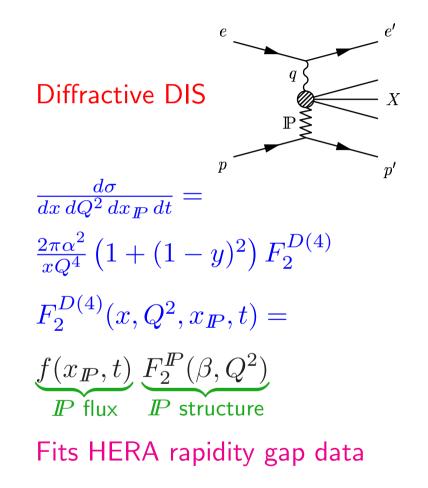
- Introduction
- Soft Colour Interaction model \longrightarrow soft gaps in ep and $p\bar{p}$
- Parton rescattering in QCD → rapidity gaps !
 Brodsky, Enberg, Hoyer, GI, hep-ph/0409119
- Summary & Outlook

Diffractive hard scattering

Idea:

Ingelman-Schlein 1984

- hard scale probes parton level
- $I\!\!P$ flux
- $I\!\!P$ structure function


Predicted:

- jets etc. in single diffraction
- diffractive deep inelastic scatering

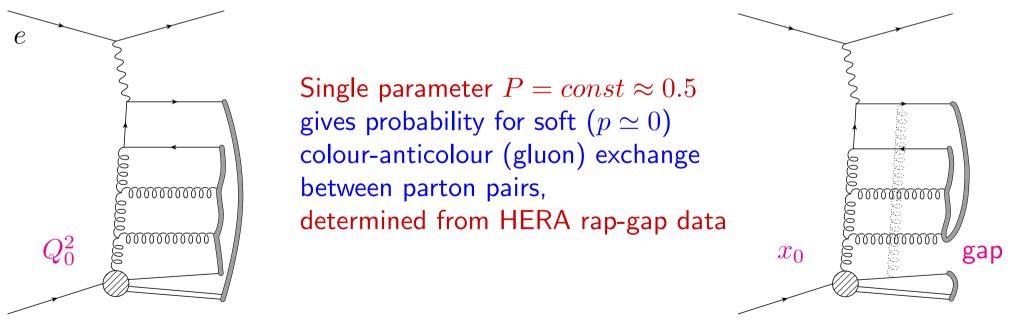
Discovery: UA8 at $Sp\bar{p}S$ 1988

- jets in single diffraction \simeq model
- hard gluons $xg(x) \sim x(1-x)$ in $I\!\!P$

- 'superhard' $\delta(1-x)$ component More exp's: HERA ep, Tevatron $p\bar{p}$

Pomeron problems:

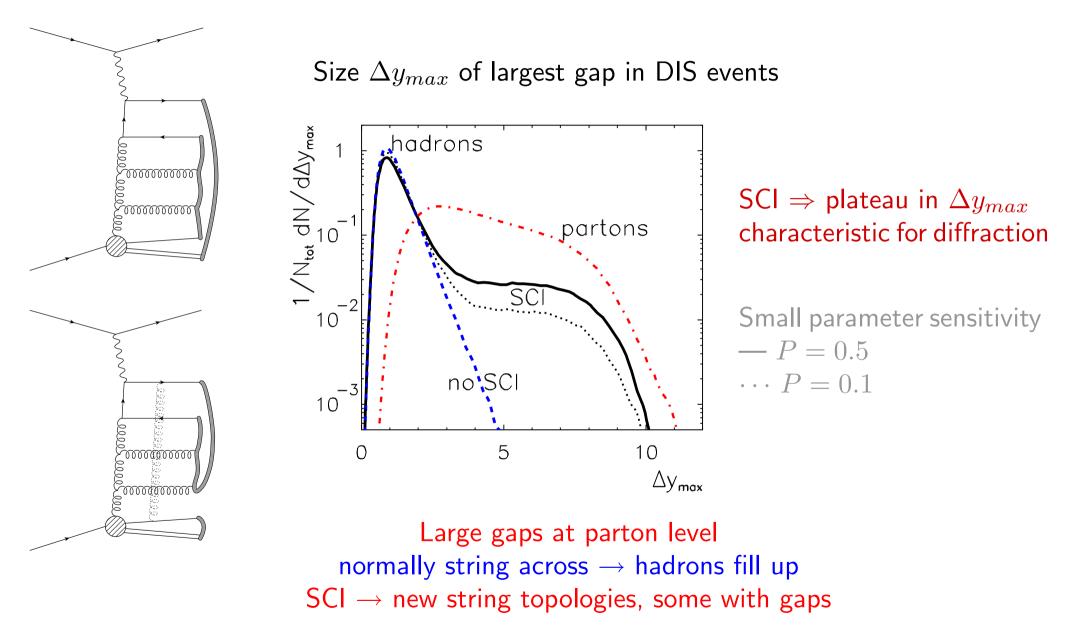
- *I*^P model fitted to HERA data
 → fails for Tevatron data
 σ(hard diffr) factor 6–100 too large
 → need 'damping' at high energies,
 e.g. I^P flux 'renormalisation'
- *IP* flux & structure not universal ill-defined for virtual *IP*
- Factorisation broken in diffractive $p\bar{p}$ coherent interactions
- Improper with IP 'emitted' from p soft, long space-time-scale interaction → IP-p cross-talk


Soft Colour Interactions:

- hard pQCD left unchanged
 not affect by soft interactions
- non-pQCD below $Q_0^2 \sim 1 \ {\rm GeV^2}$
- α_s large \Rightarrow large interaction probability *e.g.* unity for hadronisation!
- no proper theory \rightarrow models
- colour exchange modifies colour/string topology → different final state
- single model describing all final states
 diffractive ↔ nondiffractive

Soft Colour Interaction model (SCI)

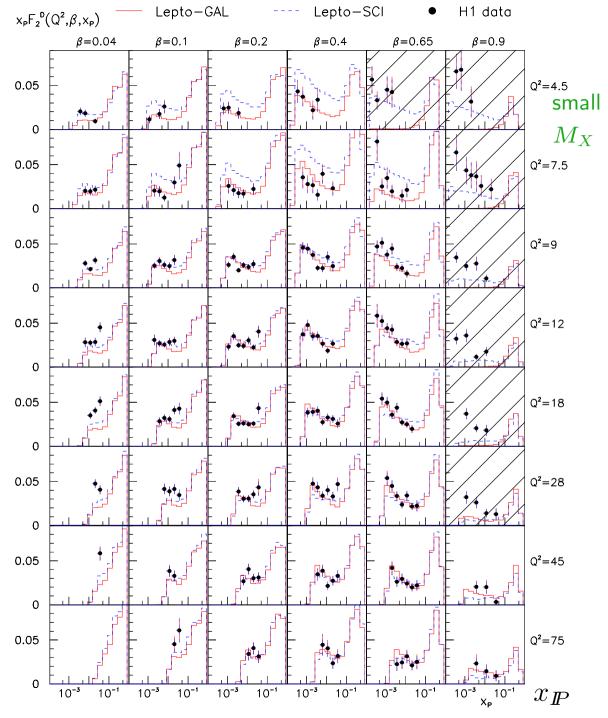
Soft interactions among partons & remnants (\leftrightarrow proton colour field) below $Q_0^2 \sim 1 \text{ GeV}^2$ Add-on to Lund Monte Carlo's LEPTO (ep) and PYTHIA ($p\bar{p}$) ME + DGLAP PS > $Q_0^2 \rightarrow \text{SCI model} \rightarrow \text{String hadronisation} \sim \Lambda$ colour ordered parton state rearranged colour order modified final state


Single model describing all final states: diffractive \leftrightarrow nondiffractive

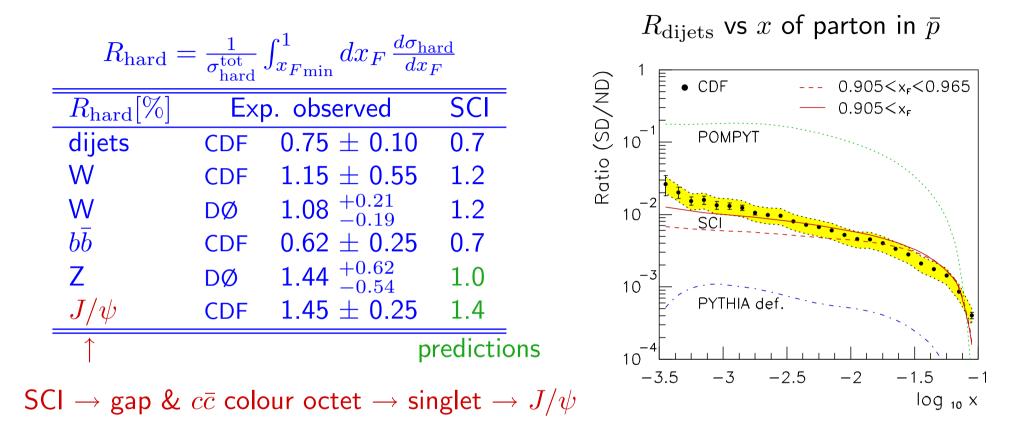
Proton remnant with $(1 - x_0)$ important for large gaps

p

Gap-size is infrared sensitive observable !

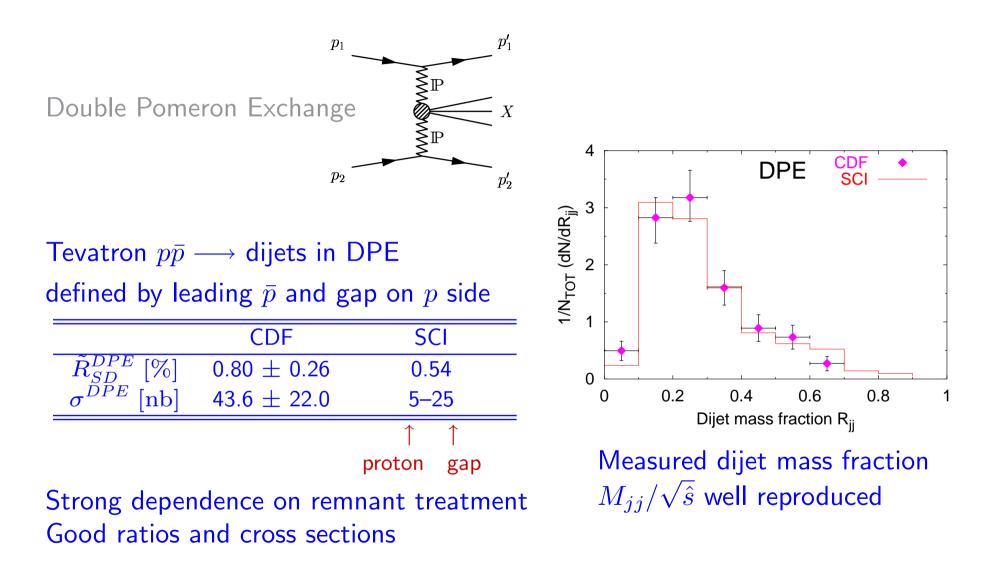

Diffractive structure function in DIS

$$x_{I\!\!P} F_2^{D(3)}(Q^2,\beta,x_{I\!\!P})$$


SCI model describes main features of HERA rapidity gap data

Not bad for a one-parameter model !

GAL is an alternative formulation of the model, based on string interactions


Single diffractive jets, $W,~Z,~b\bar{b},~J/\psi$ at the Tevatron

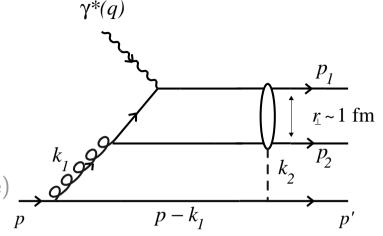
SCI model OK, Pomeron model too high, default PYTHIA too low SCI also correctly describes two-gap events (Double Pomeron Exchange)

⇒ Basis for predictions of diffractive Higgs production at Tevatron & LHC Idea: easier to reconstruct Higgs in gap-event with less hadronic activity

DPE: "Double leading Proton Events"

New theoretical basis for SCI model

Brodsky, Enberg, Hoyer, GI, hep-ph/0409119

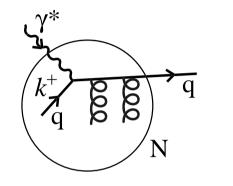

Parton rescattering in QCD:

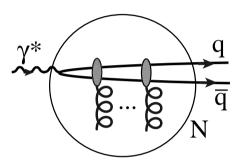
Leading twist gluon exchange between

fast outgoing partons and target 'spectators'

Instantaneous 'Coulomb' gluons (light-front/Breit frame)

 \rightarrow soft rescattering on 'frozen' target


Gluon attached *after* photon vertex \Rightarrow no pre-existing pomeron in proton Shadowing and diffraction are rescattering effects


Colour exchange \rightarrow modified colour (string) field topology \rightarrow modified hadronic final state \rightarrow gaps may arise

- gluon k_2 quickly after $k_1 \Rightarrow$ can screen colour giving singlet exchange
- even/odd # gluons \rightarrow pomeron/odderon exchange
- path-ordered exponential of gluon field (Wilson line)
- on-shell intermediate state \Rightarrow imaginary amplitude \leftrightarrow diffraction k_2 is 'soft' \rightarrow small kinematic effect
- $F_2^D \sim g_p(x_{I\!\!P}) q_g(\beta)$, *i.e.* gluon distr. $\leftrightarrow I\!\!P$ and $g \rightarrow q\bar{q}$ gives $\left(\beta^2 + (1-\beta)^2\right)$

DIS on the 'Light Front'

Light Front (LF, or Light Cone LC) formalism – invariant under boosts along $z \rightarrow$ proton rest frame: interpretation depends on q_z (LF time $x^+ = t + z$)

'parton model' frame:

$$q = (\nu, 0, 0, -\sqrt{\nu^2 + Q^2})$$
$$q^+ \simeq -m_p x_B, \quad q^- \simeq 2\nu$$

Photon probes target at an instant in LF time x^+

'dipole model' frame:

$$q = (\nu, 0, 0, +\sqrt{\nu^2 + Q^2})$$
$$q^+ \simeq 2\nu, \quad q^- \simeq -m_p x_B$$

Dipole scatters on target within finite LF time x^+

The gluons are rescatterings within coherence (loffe) length $x^- \sim 1/m_p x_B$

QCD factorisation and rescattering

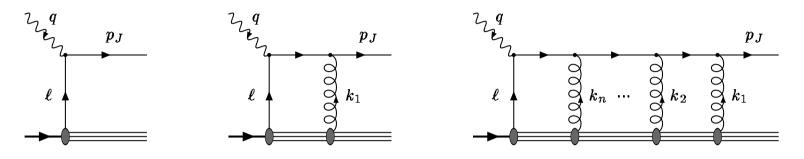
QCD factorization theorem \Rightarrow separation of hard and soft Quark parton density function (PDF) is given by

 $f_{q/N} \sim \int dx^{-} e^{-ix_B p^+ x^-/2} \langle N(p) \, | \, \bar{\psi}(x^-) \gamma^+ W[x^-; 0] \, \psi(0) \, | \, N(p) \, \rangle_{x^+=0}$

where $W[x^-; 0] = P \exp \left[ig \int_0^{x^-} dw^- A_a^+(0, w^-, 0_\perp) t_a \right]$ is the Wilson line Expanding the exponential we have

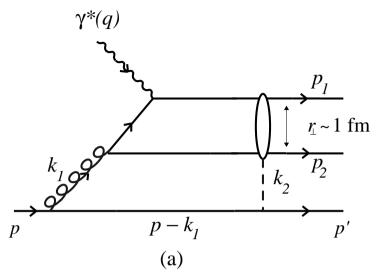
$$W[x^{-};0] \sim 1 + g \int \frac{dk_{1}^{+}}{2\pi} \frac{\tilde{A}^{+}(k_{1}^{+})}{k_{1}^{+} - i\varepsilon} + g^{2} \int \frac{dk_{1}^{+}dk_{2}^{+}}{(2\pi)^{2}} \frac{\tilde{A}^{+}(k_{1}^{+})\tilde{A}^{+}(k_{2}^{+})}{(k_{1}^{+} + k_{2}^{+} - i\varepsilon)(k_{2}^{+} - i\varepsilon)} + \dots$$

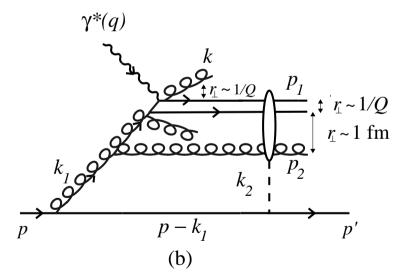
corresponding to the diagrams


$$\times \xrightarrow{p_1} + \times \xrightarrow{p_1 - k_1} p_1 + \times \xrightarrow{p_1 - k_1 - k_2} p_1 + \dots$$

for rescattering of the struck quark via longitudinal (A^+) instantaneous (in x^+) gluon exchange. No A^{\perp} within loffe coherence length $x^- \sim 1/m_p x_B$

Brodsky, Hoyer, Marchal, Peigné, Sannino, Phys. Rev. D65 (2002) 114025

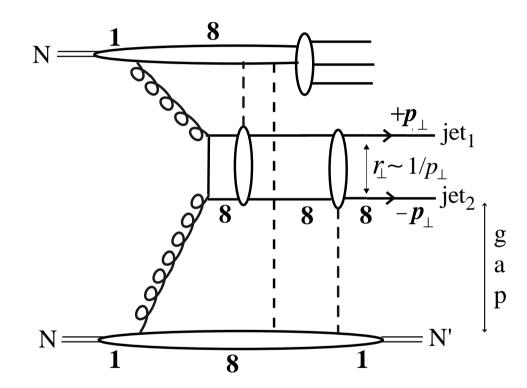

QCD rescattering and factorisation in **DIS**


The Wilson line means that DIS looks something like this:

- Rescattering compatible with factorization theorems by construction
 Wilson line part of definition of PDF ⇒ rescattering part of PDF
- Experimentally measured PDF's *include* rescattering
- Diffractive PDF's included in inclusive PDF's
- Rescattering can give on-shell intermediate states and imaginary amplitudes ⇒ diffraction

Mechanism for diffraction in DIS

The 'pomeron remnant' is soft — first splitting is in the sea


- 1. A soft gluon with $k_1^+/p^+ \sim x_{I\!\!P}$ splits into large $q\bar{q}$ pair
- 2. The γ^* scatters and a large size $q-\bar{q}$ 'dipole' is formed
- 3. Instantaneous gluon exchanges may make dipole color singlet
- At large M_X , $q\bar{q} g$ dipole dominates - soft gluon splits into gg pair
 - compact $q\bar{q}$ pair not resolved
- Higher order emissions do not destroy the rapidity gap!
 k_⊥ ≫ p_{2⊥} and k⁺ ≤ p₂⁺
 ⇒ rapidity of k larger than that of p₂

Radiation is close to γ^* vertex and is not resolved by the rescattering

Consequences for diffractive DIS

- Same hard sub-process in diffractive and non-diffractive events
- Same Q^2 dependence in diffractive and inclusive \mbox{DIS}
- Same energy (W or x_B) dependence in diffractive and inclusive DIS
- $\Rightarrow \sigma_{\rm diff}/\sigma_{\rm tot}$ independent of x_B and Q^2 , as observed in data
 - Amplitudes from rescattering dominantly imaginary, as expected for diffraction
 - Rescattering gluons have small momenta $\Rightarrow \beta$ dependence of diffractive PDF's from underlying (non-perturbative) $g \rightarrow q\bar{q}$ and $g \rightarrow gg$ processes
 - Effective $I\!\!P$ flux: $f_{I\!\!P/p}(x_{I\!\!P}) \propto g(x_{I\!\!P}, Q_0^2)$ Effective $I\!\!P$ structure function: $f_{q/I\!\!P}(\beta, Q_0^2) \propto \beta^2 + (1 - \beta)^2$

Hard diffraction in hadron-hadron collisions

- Diffractive factorization theorem does not hold
- Data shows \sim 1% diffraction instead of \sim 10 % in DIS
- Both target and projectile coloured
 → different rescattering
 → lower probability for
 - \rightarrow lower probability for colour neutralization
- DPE possible
- SCI model reproduces data

Related models

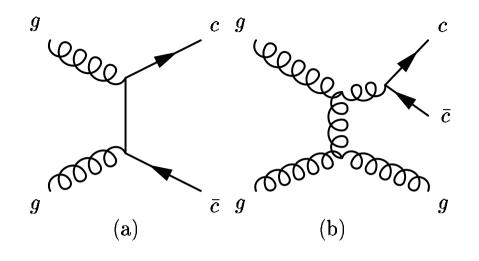
- Colour evaporation model (Halzen *et al.*) many exchanges → random colour
 Diffractive DIS (Buchmüller *et al.*) γg → qq̄ octet → singlet qq̄ (prob=1/9) which decouples from remnant → gap event
- Interactions with background colour field (Nachtmann *et al.*) *e.g.* quark traversing colour field gives 'synchrotron' radiation of soft γ 's
- Semiclassical model (Buchmüller, Hebecker *et al.*) Diffractive DIS: $\gamma \rightarrow q\bar{q}$ which traverses proton colour field interaction ~ Wilson loop averaging over colour field
- String reconnection models (Lund group) e.g. applied to $e^+e^- \rightarrow WW \rightarrow q\bar{q} q\bar{q}$ gives shift in W mass determination

Summary

SCI model OK with data:

- gap events in DIS
- leading protons/neutrons in DIS
- diffractive jets, $W, Z, b\overline{b}, J/\psi$ at Tevatron
- high- p_{\perp} $J/\psi, \, \psi', \, \Upsilon$ at Tevatron
- $J/\psi, \, \psi'$ in fixed target πA and pA

Not bad for simple (one-parameter) model ! ∃ alternative/related models Parton rescattering theory in QCD:

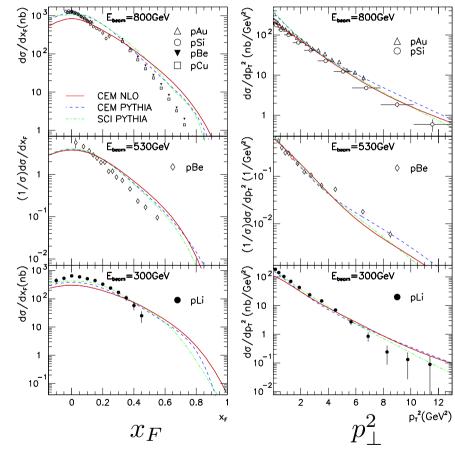

- Hard sub-process universal not affected by soft interaction
- $PDF \sim LF$ wave fcn \otimes soft rescattering
- Rescattering via soft gluons, instantaneous in LF time May shield colour → rapidity gap
- Soft rescattering does not resolve hard emissions
- Different colour environments (particles/collisions)
 ⇒ diffraction/gaps process dependent

Outlook

- Non-perturbative QCD major unsolved problem
- QCD rescattering theory
 - theory for diffraction/gaps
 - basis for successful SCI model and implies developments *e.g.* colour coherence from dynamical colour exchange probability
- Parton interaction with colour background field
 - 'old' idea with new aspects
 - different theoretical approaches
- \Rightarrow Better understanding of non-perturbative QCD

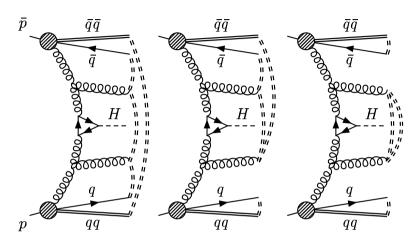
Additional material . . .

$SCI \rightarrow J/\psi$ in fixed target


pQCD (NLO or LO+PS) $\rightarrow c\bar{c}$ pair

Colour octet $c\bar{c}$ turned into singlet $c\bar{c}$ $m_{c\bar{c}} < 2m_D$ mapped on charmonium states with spin statistics (+ soft smearing)

Reproduces:


- high- $p_{\perp}~J/\psi,~\psi',\Upsilon$ at Tevatron
- x_F , p_{\perp} of J/ψ , ψ' in πA , pA =

pA @ 800, 530, 300 ${\rm GeV}$

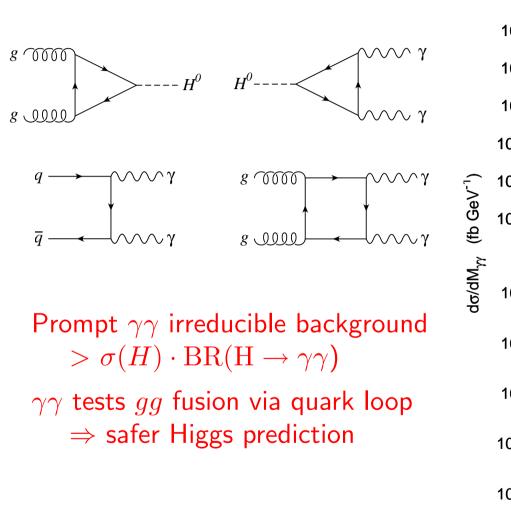
$SCI \rightarrow diffractive Higgs at Tevatron/LHC$

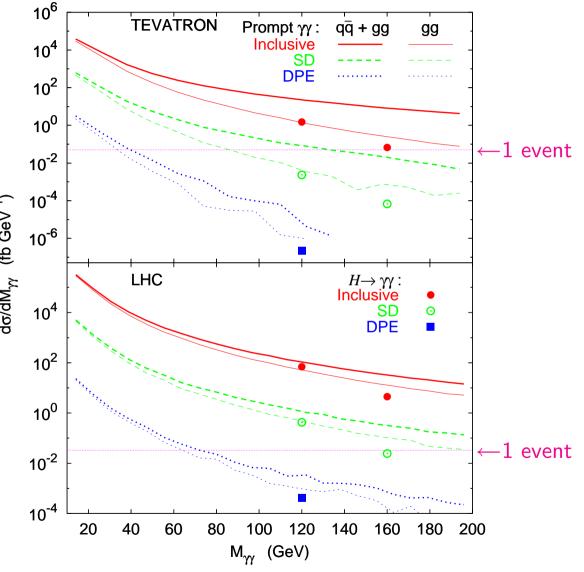
 $m_{H} = 115 \; {\rm GeV}$

Idea: diffractive events cleaner \rightarrow easier Higgs reconstruction \rightarrow Higgs discovery channel ?

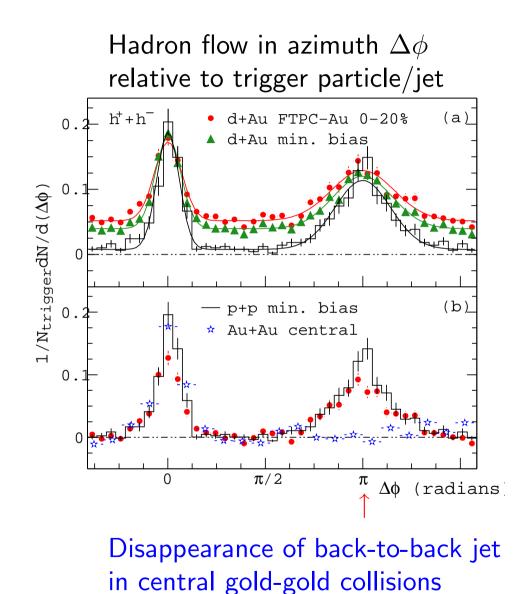
	$\sigma[{\sf fb}]$ Higgs-total	600	27000
SD	σ [fb] leading-p	1.2	190
	σ [fb] gap	2.4	27
	# H + leading-p	24	5700
	$\hookrightarrow \# \: H \to \gamma \gamma$	0.05	13
DPE	σ [fb] leading-p's	$1.2\cdot 10^{-4}$	0.19
	σ [fb] gaps	$2.4\cdot 10^{-3}$	$2.7\cdot 10^{-4}$
	# H + leading-p's	0.0024	6

Tevatron


 $\mathcal{L}=\text{20 fb}^{-1}$


large m_H + large x_F proton \rightarrow kinematical conflict \rightarrow reduced cross-section Tevatron: only few SD Higgs $\Rightarrow H \rightarrow b\bar{b}$ background/reconstruction problems LHC: Higgs observable in SD (also $H \rightarrow \gamma\gamma$) and DPE but not so clean since particles in 'gap' region \rightarrow 'pots' better

LHC

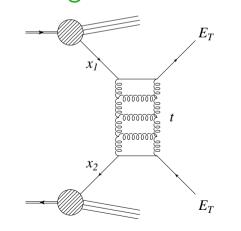

 $\mathcal{L} = 30 \text{ fb}^{-1}$

Diffractive $H \rightarrow \gamma \gamma$ and prompt $\gamma \gamma$

Jet quenching in quark-gluon plasma

MC model for soft colour interactions of hard-scattered parton with background quark-gluon plasma

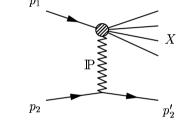
Reproduces effects qualitatively


Soft and hard rapidity gaps

Soft/hard gap \Leftrightarrow

small/large momentum transfer across gap
non-perturbative/perturbative QCD description

Hard gap between jets:


- observed at Tevatron
- understood/described by exchange of colour singlet BFKL gluon ladder with non-leading corrections

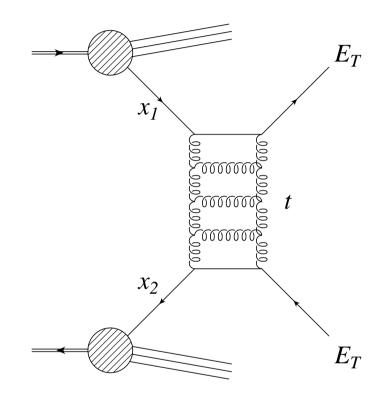
Enberg, GI, Motyka, PL B524 (2002) 273

Soft gap \leftrightarrow leading proton:

• 'soft-soft' \Rightarrow hadron basis \rightarrow Regge

- 'hard-soft' \leftrightarrow hard int'n gap proton DIS/jets/W + gap
 - \rightarrow pQCD partons + hadronisation
 - \Rightarrow mixed basis: parton & hadron Models:
 - Regge → pomeron structure works, but problematic
 - Soft Colour Interactions . . .

Gap between jets \rightarrow hard QCD exchange

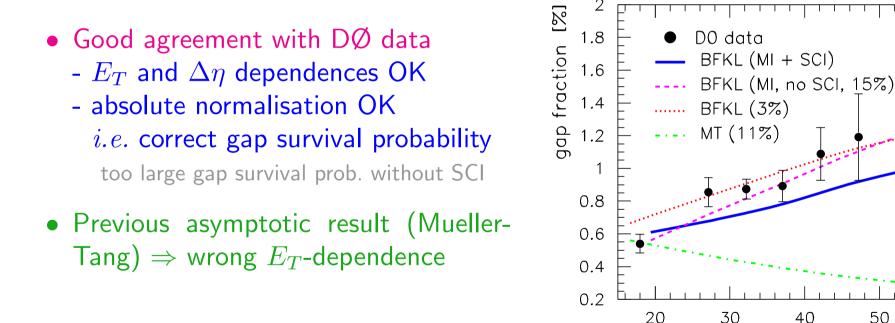

Rapidity gap between a pair of jets $\rightarrow |t|$ across gap is large \rightarrow different from "normal" diffraction

Elastic parton-parton scattering by hard colour singlet exchange (hard pomeron)

High energy limit $s/|t| \gg 1 \Rightarrow \text{amplitude}$ dominated by terms $\sim [\alpha_s \ln(s/|t|)]^n$

BFKL equation resums these terms, including

- virtual corrections
- reggeization of the exchanged gluons



Numerical solution of BFKL eqn. with non-leading corrections consistency constraint & running coupling

Comparison to data – gap survival

This subprocess implemented in $\mathrm{PYTHIA} \rightarrow$ account for gap survival depending on HO parton emissions, multiple scatterings, hadronization

SCI destroys gaps by re-arranging strings across gaps

First clear evidence of BFKL dynamics \Rightarrow better understanding of data and QCD

70

E₇₂

60

 E_T of jet