

Physique des particules élémentaires aspects expérimentaux

Suive/complémente le PHYS 2263 (d)

La référence de base: D.H. Perkins *Introduction to High Energy Physics,* 4th edition + PDG, *Review of Particle Physics*, les chapitres selectionnés à <u>http://pdg.lbl.gov</u>

+ les références supplémentaires:

Aitchison&Hey, Halzen&Martin, Ferbel(ed), Kleinknecht

Plan du cours

1.	Introduction/motivation	(3.2)
2.	Détecteurs modernes	(10.2)
3.	Collisionneurs à hautes énergies	(17.2)
4.	Systèmes des déclenchement et sélection	(24.2
5.	Interactions e ⁺ e ⁻	(3.3)
6.	Interactions <i>ep</i>	(10.3)
7.	Interactions pp	(21.4)
8.	Au-delà du modèle standard +	
	physique des particules et cosmologie	(5.5)
9.	Cours d'exercices pratiques	
10	et encore une fois	

La physique aupres des collisioneurs pp UCL

 \rightarrow Proton Proton Collider with $E_p \ge 7 \text{ TeV}$

of interactions/crossing:

- Interactions/s:
- Interactions. eractions/s: Lum = 10^{34} cm⁻²s⁻¹= 10^7 mb⁻¹Hz (t) (t
- Events/beam crossing:
 - ∧t = 25 ns = 2.5x10⁻⁸ s
 - Interactions/crossing=17.5
- Not all p bunches are full
 - Approximately 4 out of 5 (only) are full
 - Interactions/"active" crossing = 17.5 x 3564/2835 = 23

Operating conditions (summary):

- 1) A "good" event containing a Higgs decay +
- 2) \approx 20 extra "bad" (minimum bias) interactions

20 min bias events overlap H→ZZ Z→µµ H→ 4 muons: the cleanest ("golden") signature

And this (not the H though...) repeats every 25 ns...

- Inelastic: 10⁹ Hz
- W $\rightarrow \ell \nu$: 10² Hz
- t t production: 10 Hz
- Higgs (100 GeV/c²): 0.1 Hz
- ♦ Higgs (600 GeV/c²): 10⁻² Hz
- Selection needed: 1:10^{10–11}
 - Before branching fractions...

Caractérisation globale d'une collision hadronique, les variables cinématiques utilisées $p_{\tau} = p_{\perp} = \sqrt{p_x^2 + p_y^2} = p \sin \theta$ Moment transversal Section efficace $E \frac{d^3 \sigma}{dp^3} = E \frac{d^3 \sigma}{dp_x dp_y dp_z} = \frac{1}{2\pi} \frac{d^2 \sigma}{p_T dp_T d(p_L/E)} \sim \underbrace{F(p_T)F'(p_L)}_{\text{(Feynman scaling)}}$ $F(p_T) \sim e^{-bp_T}$; $\langle p_T \rangle_{\text{particules secondaires}} \approx 0.3 - 0.5 \ GeV/c \approx \frac{h}{D}$ $E_{\tau} = \sum E_i \sin \theta_i$ Energie transversal i=part.sécondaires p₁ р p_{faisceau} Système de centre de masse Système de laboratoire

Caractérisation globale d'une collision hadronique, les variables cinématiques utilisées

$$x_{F} = p_{L} / p_{L}^{\max} = p_{L} / \left(\sqrt{s} / 2\right) \quad (\text{Feynman "x"})$$
$$y = \frac{1}{2} \ln \left(\frac{E + p_{L}}{E - p_{L}}\right) \stackrel{\beta \to 1, m \to 0}{\approx} \eta = -\ln \left(\tan \frac{\theta}{2}\right)$$

Rapidité **y**, « invariante » de Lorentz

 η , pseudo-rapidité

$$y \rightarrow y + \tanh^{-1}(\beta)$$
 $y_{\max} = \frac{1}{2} \ln\left(\frac{s}{m^2 + p_T^2}\right)$

38.5.2. *Inclusive reactions*: Choose some direction (usually the beam direction) for the z-axis; then the energy and momentum of a particle can be written as

$$E = m_T \cosh y \,, \, p_x \,, \, p_y \,, \, p_z = m_T \sinh y \,, \tag{38.35}$$

where m_T is the transverse mass

$$m_T^2 = m^2 + p_x^2 + p_y^2 , \qquad (38.36)$$

and the rapidity y is defined by

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

$$= \ln\left(\frac{E+p_z}{m_T}\right) = \tanh^{-1}\left(\frac{p_z}{E}\right) . \tag{38.37}$$

Under a boost in the z-direction to a frame with velocity β , $y \to y - \tanh^{-1}\beta$. Hence the shape of the rapidity distribution dN/dy is invariant. The invariant cross section may also be rewritten

$$E\frac{d^3\sigma}{d^3p} = \frac{d^3\sigma}{d\phi \, dy \, p_T \, dp_T} \Longrightarrow \frac{d^2\sigma}{\pi \, dy \, d(p_T^2)} \,. \tag{38.38}$$

For $p \gg m$, the rapidity [Eq. (38.37)] may be expanded to obtain

$$y = \frac{1}{2} \ln \frac{\cos^2(\theta/2) + m^2/4p^2 + \dots}{\sin^2(\theta/2) + m^2/4p^2 + \dots}$$

$$\approx -\ln \tan(\theta/2) \equiv \eta$$
(38.42)

where $\cos \theta = p_z/p$. The pseudorapidity η defined by the second line is approximately equal to the rapidity y for $p \gg m$ and $\theta \gg 1/\gamma$, and in any case can be measured when the mass and momentum of the particle is unknown. From the definition one can obtain the identities

$$\sinh \eta = \cot \theta$$
, $\cosh \eta = 1/\sin \theta$, $\tanh \eta = \cos \theta$. (38.43)

JCL

Pseudorapidity Distributions in $\overline{p}p$ Interactions

Figure 40.4: Charged particle pseudorapidity distributions in $p\overline{p}$ collisions for 53 GeV $\leq \sqrt{s} \leq 1800$ GeV. UA5 data from the Sp \overline{p} S are taken from G.J. Alner *et al.*, Z. Phys. C33, 1 (1986), and from the ISR from K. Alpgøard *et al.*, Phys. Lett. **112B**, 193 (1982). The UA5 data are shown for both the full inelastic cross-section and with singly diffractive events excluded. Additional non single-diffractive measurements are available from CDF at the Tevatron, F. Abe *et al.*, Phys. Rev. D41, 2330 (1990) and Experiment P238 at the Sp \overline{p} S, R. Harr *et al.*, Phys. Lett. **B401**, 176 (1997). (Courtesy of D.R. Ward, Cambridge Univ., 1999.)

Figure 40.11: Total and elastic cross sections for pp and $\overline{p}p$ collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html. (Courtesy of the COMPAS

A two jet event in the DØ experiment

Test of QCD Jet production

Data from the DØ experiment (Run II)

Inclusive Jet spectrum as a function of Jet-P_T

very good agreement over many orders of magnitude !

within the large theoretical and experimental uncertainties

$$\sigma = \sum_{a,b} \int dx_a \, dx_b \, f_a \, (x_a, Q^2) \, f_b \, (x_b, Q^2) \, \hat{\sigma}_{ab} \, (x_a, x_b)$$

Sum over initial partonic states a,b $\hat{\sigma}_{ab} \equiv$ hard scattering cross-section

 $f_i(x, Q^2) \equiv$ parton density function

Example: <u>W-production</u>: (leading order diagram)

... + higher order QCD corrections (perturbation theory)

K. Piotrzkowski, PHYS 2356

K. Piotrzkowski, PHYS 2356

Observation des Bosons W

K. Piotrzkowski, PHYS 2356

Method used at hadron colliders different from e⁺e⁻ colliders

- W \rightarrow jet jet : cannot be extracted from QCD jet-jet production \Rightarrow cannot be used
- W $\rightarrow \tau v$: since $\tau \rightarrow v + X$, too many undetected neutrinos \Rightarrow cannot be used

only $W \rightarrow ev$ and $W \rightarrow \mu v$ decays are used to measure m_W at hadron colliders

 \sim 50 times larger statistics than at Tevatron

 ~ 6000 times larger statistics than WW at LEP

K. Piotrzkowski, PHYS 2356

 $m_{W}^{2} = (E_{\ell} + E_{\nu})^{2} - (\vec{p}_{\ell} + \vec{p}_{\nu})^{2} = 2E_{\ell}E_{\nu}(1 - \cos\theta_{\ell\nu})$

Since \vec{p}_L^{ν} not known (only \vec{p}_T^{ν} can be measured through E_T^{miss}), measure transverse mass, i.e. invariant mass of $\ell \nu$ in plane perpendicular to the beam :

m_T^W distribution is sensitive to m_W

 $\Rightarrow fit experimental$ distributions with SMprediction (Monte Carlosimulation) for different $values of <math>m_W \rightarrow find m_W$ which best fits data

Come mainly from capability of Monte Carlo prediction to reproduce real life, that is:

- <u>detector performance</u>: energy resolution, energy scale, etc.
- <u>physics</u>: p_T^W , θ_W , Γ_W , backgrounds, etc.

Dominant error (today at Tevatron, most likely also at LHC): knowledge of lepton energy scale of the detector: if measurement of lepton energy wrong by 1%, then measured m_W wrong by 1%

Expected precision on m_w at LHC

Source of uncertainty	$\Delta m_{ m W}$
Statistical error	<< 2 MeV
Physics uncertainties $(p_T^W, \theta_W, \Gamma_W,)$	~ 15 MeV
Detector performance (energy resolution, lepton identification, etc,)	< 10 MeV
Energy scale	15 MeV
Total (per experiment, per channel)	~ 25 MeV

Combining both channels (ev, μv) and both experiments (ATLAS, CMS), $\underline{\Delta m}_{W} \approx 15 \text{ MeV}$ should be achieved. However: very difficult measurement

Dilepton channel:

$$\sigma_{tt} = 13.2 \pm 5.9_{stat} \pm 1.5_{sys} \pm 0.8_{lum} pb$$

Lepton + jets channel:

$$\sigma_{tt} = 5.3 \pm 1.9_{stat} \pm 0.8_{syst} \pm 0.3_{lum} pb$$

NLO for $M_{top} = 175$ GeV: 6.70^{+0.71}-0.88 pb

K. Piotrzkowski, PHYS 2356

K. Piotrzkowski, PHYS 2356

 $t\overline{t}$ production is the <u>main background</u> to new physics (SUSY, Higgs)

K. Piotrzkowski, PHYS 2356

BR $\approx 100\%$ in SM

 -- <u>hadronic channel</u>: both W → jj
 ⇒ 6 jet final states. BR ≈ 50 % but large QCD multijet background.

In all cases two jets are b-jets \Rightarrow displaced vertices in the inner detector

- -- <u>leptonic channel</u>: both $W \rightarrow \ell \nu$ $\Rightarrow 2 \text{ jets} + 2\ell + E_T^{\text{miss}}$ final states. BR $\approx 10 \%$. Little kinematic constraints to reconstruct mass.
- -- <u>semileptonic channel</u>: one W \rightarrow jj , one W $\rightarrow \ell \nu$ $\Rightarrow 4 \text{ jets} + 1\ell + E_T^{\text{miss}}$ final states. BR $\approx 40 \%$. If $\ell = e, \mu$: gold-plated channel for mass measurement at hadron colliders.

Expected precision on m_{top} at LHC

Source of uncertainty	Δm_{top}	
Statistical error	<< 100 MeV	If / when Higgs
Physics uncertainties (background, FSR, ISR, fragmentation, etc.) Jet scale (b-jets, light-quark jets)	~ 1.3 GeV ~ 0.8 GeV	discovered, comparison of measured m_H with indirect measurement will be essential consistency checks of EWSB
Total (per experiment, per channel)	~ 1.5 GeV	
• Uncertainty dominated by the know of physics and not of detector.	vledge From	n $\Delta m_{top} \sim 1 \text{ GeV}, \Delta m_W \sim 15$

• By combining both experiments and all channels: $\Delta m_{top} \sim 1 \text{ GeV}$ at LHC

From $\Delta m_{top} \sim 1 \text{ GeV}, \Delta m_W \sim 15$ MeV \rightarrow indirect measurement $\Delta m_H/m_H \sim 25\%$ (today $\sim 50\%$)

Single top quark production

Les évennements pp peuventr être plus compliques !

Production via l'interaction faible!

K. Piotrzkowski, PHYS 2356

$H > ZZ^{(*)} > 4I$ 120 $< m_H < 700 \text{ GeV}$

Production du Higgs au LHC

 Section efficace de production et Luminosité ~ 10 fois plus élevée au LHC qu'au Tevatron Exploitation des canaux rares gg->gg, gg->gg,... q W,Z W,Z bremsstrahlung

Rapport d'embranchement

Basses masses

- σ(H->bb)~20 pb (120GeV)
- σ(bb)~500μb
- Mode γγ (ECAL)
- Ouverture WW, ZZ

(hautes masses)

- WW, ZZ
- Modes W en jets ou l ν (E_T Manquante)

Collision de ions lourds ultra-relativiste et le plasma de quarks et gluons

K. Piotrzkowski, PHYS 2356

Distribution inclusive des particules UCL

- Factor of ~ 3 more particles produced at RHIC than at SPS
- Wider **η** distribution

Transverse "radii" of the system at freeze-out UCL

UCL

baryon density

Jet quenching prediction

- Before high-p_t partons hadronize and form jets they interact with the medium
- * \rightarrow decreases their momentum
- \rightarrow fewer high-p_t particles
- \rightarrow "jet quenching"