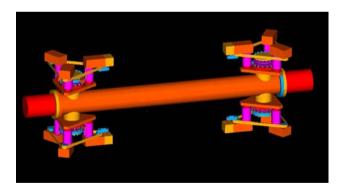
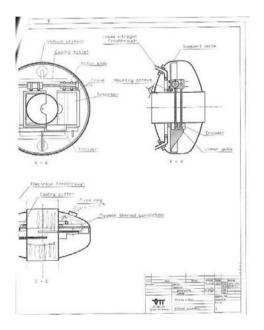

µstation design philosophy

- mechanical positioning and vacuum chamber separated
- all parts in beam vacuum



µstation cluster


Matti Ryynänen 151104 NOKIA

Problem tear down

- Task analysis
- Technical requirements
- Other requirements

Roman Pot cluster

µstation design 2001

Tasks of the µstation

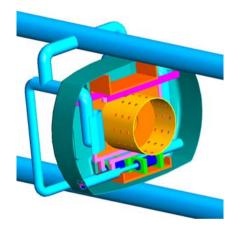
- To hold a detector on it's rest position "far" from the p-beam
- Moving of the detector into the measuring location and keeping it dynamically there by compensating the relative movements between the beam and the support mechanics
- To bring the detector back in the rest position

Technical requirements

- Detectors and the measurement itself
- Vacuum
- Beam
- Harsh environment
- Other detectors
- Other measurements

First mock-up

Detector and measurement itself


- electric power in
- control data in, measured data out
- stiff detector holder and moving mechanics
- 10 µm dynamical internal positioning accuracy
- stable measuring temperature when power on
- thermal power transportation out
 - (low temperature for detector recovery when power off)

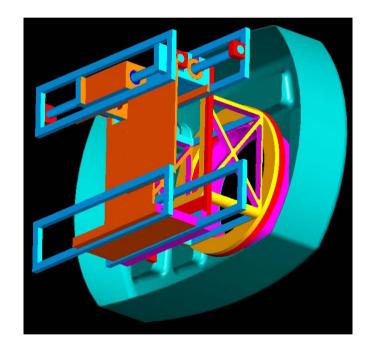
Vacuum

- Compatible materials
 - No polymers
- Minimal mechanical risks
 - All welded structure
 - NEG coating and if needed a NEG pump actually makes this device a vacuum pump

Beam

- rf-fitting
- hot spots, thermal load out
- rf-shielding
- multipacting restriction
 - NEG
 - material selection
 - local magnet fields & geometry

 μ station with services


Matti Ryynänen 151104 NOKIA

Harsh environment

- high ~ moderate magnet field
- high radiation
 - no polymers, no electro magnetic motors
 - quarts, ceramics, diamond like carbon
 - austenitic steel, copper, titanium
 - recovery of functional ceramics

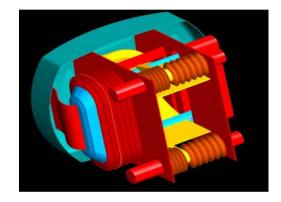
Mechanical restrictions of the experiment architecture

- restricted size
- restricted mass
- restricted maintenance

Other requirements

- Ultimate reliability newer disturb other measurements
 - no bellows (excluding emergency actuator)
 - all welded construction
 - emergency actuator
 - traditional solutions should be used,
 - easy risk analysis
- Flexible for further development

Components


- Motors (Burleigh)
- Encoders (Heidenhein not yet completely feasibe, custom), may not be needed
- Detectors (custom), other electronics e.g. optical data link
- Electrical and optical feed troughs (Ceramaseal)
- Cables (custom)
- Heat link (custom)
- Heat exchanger (custom)
- Emergency actuator (custom)
- Impedance fitting (custom)
- Component support (custom)
- Chamber (deep drawn, TIG, EB, and LASER welded)

Components

- Motors (Burleigh)
- Encoders (Heidenhein not yet completely feasibe, custom), may not be needed
- Detectors (custom), other electronics e.g. optical data link
- Electrical and optical feed troughs (Ceramaseal) <=
- Cables (custom) <=
- Heat link (custom) <=
- Heat exchanger (custom) <=
- Emergency actuator (custom)
- Impedance fitting (custom)
- Component support (custom)
- Chamber (deep drawn, TIG, EB, and LASER welded)

Easy environment obtion Moving mechanics in fore vacuum

- \sim traditional approach
- Changeable detectors in in easy locations

µstation with fore vacuum

- No benefit seen in the ultimate detector locations
- Technically more difficult

Matti Ryynänen 151104 NOKIA