### Challenging the Standard Model through Flavour Physics

**Robert Fleischer** 

CERN, Department of Physics, TH Division

2nd CPNSH Workshop, CERN, 2-3 December 2004

- Setting the Stage
- <u>Illustration:</u> Systematic strategy in 3 steps:
  - 1. " $B \rightarrow \pi \pi$  puzzle" in the current *B*-factory data:

... non-factorizable hadronic effects (SM)  $\Rightarrow$ 

- 2. " $B \rightarrow \pi K$  puzzle" in the current *B*-factory data: ... may indicate NP in the EW penguin sector  $\Rightarrow$
- 3. Connection with rare K and B decays:

... several spectacular *predictions*  $\Rightarrow$  tests!

• Concluding Remarks

Setting the Stage

### **Preliminaries**

- In this decade, stringent tests of the flavour dynamics of the SM – in particular the Kobayashi–Maskawa mechanism of CP violation – through dedicated B and K experiments!
- Central Target:



- Main Goals:
  - Overconstrain the UT as much as possible
  - Search for *discrepancies* with the SM:

... may shed light on NP:

 $\rightarrow$  synergy with NP searches at the LHC ...

[See also talk by G. Branco @ this workshop]

 $\begin{aligned} a_{\psi K_S} &= 0.69 \\ a_{\psi K_S} &= 0.64 \\ Br(K_L)/Br(K^+) \end{aligned}$ 

#### **Current Status**



[Buras, Schwab & Uhlig, hep-ph/0405132; for other analyses, see http://ckmfitter.in2p3.fr/, http://www.utfit.org]

• Further constraints on the Unitarity Triangle:

– 
$$B 
ightarrow \pi\pi$$
,  $ho\pi$ ,  $ho
ho$ ,

$$- B \to D^{(*)\pm} \pi^{\mp}$$

-  $B \rightarrow DK$  decays:

remarkably consistent with the KM picture!

### But we should not be "desparate" ...

- Despite tremendous progress, the picture of CP-violating as well as rare B and K decays is still pretty limited:
  - Example:  $b \rightarrow d\bar{s}s$  penguins, i.e. decays of the kind  $B_d \rightarrow K^0 \bar{K}^0$  (BaBar @ ICHEP '04), are now emerging.
- It is to be seen whether modifications of the SM description of guark flavour dynamics and CP violation will be required...
- Interestingly, the current BaBar and Belle data indicate also a couple of potential *inconsistencies* with the SM:
  - $B \rightarrow \phi K$ :
    - \*  $(\sin 2\beta)_{\phi K_{\rm S}}$  may differ from  $(\sin 2\beta)_{\psi K_{\rm S}}$ .
    - \* Polarization analysis of  $B \rightarrow \phi K^*$ , although hadronic effects complicate the search for NP significantly.

-  $\underline{B \rightarrow \pi K}$ :

- \* The decays with prominent EW penguin contributions exhibit a puzzling pattern of their branching ratios, suggesting NP in the EW penguin sector.
- \* Should this actually be the case, spectacular NP effects in several rare decays can be expected:  $\underbrace{K_{\mathrm{L}} \to \pi^{0} \nu \bar{\nu}, K_{\mathrm{L}} \to \pi^{0} e^{+} e^{-}}_{, B_{s,d} \to \mu^{+} \mu^{-}, \dots$ E391(a), KOPIO, NA48 ...
- Moreover, an important element is still missing:

The  $B_s$ -Meson System  $| \rightarrow$  the domain of LHCb ...

### Systematic Search for NP: An Example

- Addresses  $B \to \pi \pi, \pi K$  modes and rare B & K decays:
  - We shall stay within the SM as long as "possible";
  - pattern of the  $B \rightarrow \pi K$  data guides us to a NP scenario with enhanced EW penguins + new weak phases.

 $\Rightarrow$  3 interrelated steps:

- 1 SM analysis of the  $B \to \pi \pi$  data (isospin symmetry): \* Allows a *clean* extraction of hadronic parameters. \* CP violation in  $B_d \to \pi^0 \pi^0$  can be *predicted*.
  - 2 The hadronic  $B \to \pi K$  parameters can be determined through their  $B \to \pi \pi$  counterparts with the help of SU(3) and plausible assumptions (can be checked!):
    - \* Insights into  $SU(3)\mbox{-breaking}$  effects can be obtained and  $\gamma$  extracted, in accordance with the UT fits.
    - \* We can accommodate the  $B \rightarrow \pi K$  data in the SM, with the exciting *exception* of those observables that are significantly affected by EW penguins!
    - However, sizeably enhanced EW penguins with a large NP phase allow us to describe the current data!
    - \* CP violation in  $B_d \to \pi^0 K_{\rm S}$  can be *predicted*.
- 3 The enhanced EW penguins with large CP-violating NP phases have also important implications for rare decays!

[A.J. Buras, R.F., S. Recksiegel, F. Schwab, *Phys. Rev. Lett.* **92** (2004) 101804; *Nucl. Phys.* **B697** (2004) 133; new data:  $\rightarrow$  hep-ph/0410407]

### Step 1:

$$B \to \pi \pi$$
:

$$B^{+} \to \pi^{+}\pi^{0}, \quad B^{-} \to \pi^{-}\pi^{0}$$
$$B^{0}_{d} \to \pi^{+}\pi^{-}, \quad \bar{B}^{0}_{d} \to \pi^{+}\pi^{-}$$
$$B^{0}_{d} \to \pi^{0}\pi^{0}, \quad \bar{B}^{0}_{d} \to \pi^{0}\pi^{0}$$

 $\Rightarrow$  ... non-factorizable hadronic interference effects (SM)!

#### **Input Observables & Hadronic Parameters**

• Two independent ratios of the CP-averaged BRs:

$$\begin{aligned} R_{+-}^{\pi\pi} &\equiv 2 \left[ \frac{\text{BR}(B^{\pm} \to \pi^{\pm} \pi^{0})}{\text{BR}(B_{d} \to \pi^{+} \pi^{-})} \right] \frac{\tau_{B_{d}^{0}}}{\tau_{B^{+}}} = 2.20 \pm 0.31 \\ R_{00}^{\pi\pi} &\equiv 2 \left[ \frac{\text{BR}(B_{d} \to \pi^{0} \pi^{0})}{\text{BR}(B_{d} \to \pi^{+} \pi^{-})} \right] = 0.67 \pm 0.14 \end{aligned}$$

- Surprising experimental results, which differ significantly from the QCDF picture of  $R_{+-}^{\pi\pi} \sim 1.24$  and  $R_{00}^{\pi\pi} \sim 0.07$ .
- CP-violating observables of  $B_d \to \pi^+ \pi^-$ :

$$\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^+ \pi^-) = -0.37 \pm 0.11$$
$$\mathcal{A}_{\rm CP}^{\rm mix}(B_d \to \pi^+ \pi^-) = +0.61 \pm 0.14$$

- Experimental picture is not yet settled (HFAG averages).
- Theoretical interpretation to be discussed below yields constraints for the UT in nice accordance with the SM...
- Observables involve the following hadronic parameters:
  - Ratio of "penguin" to "tree" amplitudes:

$$de^{i\theta} \equiv \frac{1}{R_b} \left[ \frac{\mathcal{P}_{tc}}{\mathcal{T} - (\mathcal{P}_{tu} - \mathcal{E})} \right]$$

- Ratio of "colour-suppressed to -allowed tree" amplitudes:

$$xe^{i\Delta} \equiv \left[\frac{\mathcal{C} + (\mathcal{P}_{tu} - \mathcal{E})}{\mathcal{T} - (\mathcal{P}_{tu} - \mathcal{E})}\right]$$

### **Output & Predictions**

• Hadronic parameters can be *unambiguously* determined:

$$\Rightarrow \begin{cases} d = 0.51^{+0.26}_{-0.20}, & \theta = +(140^{+14}_{-18})^{\circ} \\ x = 1.15^{+0.18}_{-0.16}, & \Delta = -(59^{+19}_{-26})^{\circ} \end{cases}$$
(1)

On the other hand:

$$d|_{\text{QCDF}} = 0.29 \pm 0.09, \quad \theta|_{\text{QCDF}} = -(171.4 \pm 14.3)^{\circ}$$
  
 $d|_{\text{PQCD}} = 0.23^{+0.07}_{-0.05}, \quad +139^{\circ} < \theta|_{\text{PQCD}} < +148^{\circ}$   
[QCDF: Buchalla & Safir ('04); PQCD: Keum & Sanda ('03)]

• (1) allows the *prediction* of CP violation in  $B_d \to \pi^0 \pi^0$ :

$$\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^0 \pi^0) \Big|_{\rm SM} = -0.28^{+0.37}_{-0.21}$$
$$\mathcal{A}_{\rm CP}^{\rm mix}(B_d \to \pi^0 \pi^0) \Big|_{\rm SM} = -0.63^{+0.45}_{-0.41}$$

 $\Rightarrow$  exciting perspective of *large* CP violation!

- First *B*-factory results reported @ ICHEP '04:

$$\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^0 \pi^0) = \begin{cases} -(0.12 \pm 0.56 \pm 0.06) & (\text{BaBar}) \\ -(0.43 \pm 0.51 \stackrel{+0.17}{_{-0.16}}) & (\text{Belle}) \end{cases}$$
$$\Rightarrow \quad \mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^0 \pi^0) = -(0.28 \pm 0.39)$$

 $\Rightarrow$  encouraging argeement with our prediction!

- Measurement of one of the CP-violating  $B_d \to \pi^0 \pi^0$ observables will allow a *clean determination* of  $\gamma$ .

## Step 2:

$$B \to \pi K$$
:

$$\begin{array}{ccc} B^+ \to \pi^+ K^0, & B^- \to \pi^- \bar{K}^0 \\ & & & \\ B^0_d \to \pi^- K^+, & \bar{B}^0_d \to \pi^+ K^- \end{array} \end{array} \right\} \begin{array}{ccc} colour\text{-suppressed} \\ \text{EW penguins} \\ (\text{expected to be tiny}) \end{array}$$

$$\begin{array}{c} B^+ \to \pi^0 K^+, \quad B^- \to \pi^0 K^- \\ B^0_d \to \pi^0 K^0, \quad \bar{B}^0_d \to \pi^0 \bar{K}^0 \end{array} \end{array} \right\} \begin{array}{c} colour-allowed \\ {\sf EW \ penguins} \\ ({\rm significant}) \end{array}$$

### $\Rightarrow$ ... may indicate NP in the EW penguin sector!

### **Preliminaries**

- The  $B \to \pi K$  dynamics is very different from  $B \to \pi \pi$ :
  - QCD penguins play the dominant rôle.
  - EW penguins complicate the analysis, but provide also a nice avenue for NP to manifest itself in the data!
     [R.F. & Mannel ('97); Grossman, Neubert & Kagan ('99); ...]
- Main Ingredients of our  $B \rightarrow \pi K$  Analysis:
  - Starting point:
    - \* Hadronic  $B \rightarrow \pi \pi$  parameters determined in Step 1.
    - \* SM CKM fits (insignificantly affected by EWPs).
  - Working hypothesis:
    - i) SU(3) flavour symmetry of strong interactions
    - ii) Neglect penguin annihilation and exchange topologies

Internal consistency checks OK!  $(\rightarrow LHCb)$ 

- We may then determine the relevant hadronic  $B \rightarrow \pi K$ parameters through their  $B \rightarrow \pi \pi$  counterparts:

 $\Rightarrow \quad \text{Prediction of } B \to \pi K \text{ observables in the SM!}$ 

• Key Question:

Will we encounter discrepancies?

#### Observables with tiny impact of EW penguins PSfrag replacements $\frac{\bar{\eta}}{\rho}$ •Br (mportant recent development @ ICHEP '04: $Br(K^+)/10^{-11}$ $a_{\psi K_S} = 0.83$ $a_{\overline{\psi}K_S} = 0.63$ $a_{\psi K_S} = 0.64$ $Br(K_L)/Br(K^+)$ $\mathcal{A}_{CP}^{dir}(B_d \to \pi^{\mp}K^{\pm}) = +0.113 \pm 0.019.$ $- \ln_{20}^{\frac{5}{24}}$ $R_{CP}^{dir}(B_d \to \pi^{\mp}K^{\pm}) = +0.127^{+0.102}_{-0.066}.$

• We may convert the CP asymmetries of  $B_d \to \pi^+\pi^-$  into a range for  $\gamma$  with the help of  $B_d \to \pi^{\mp}K^{\pm}$ :



- Moderate numerical discrepancy for the ratio R of the CP-averaged  $B_d \to \pi^{\mp} K^{\pm}$ ,  $B^{\pm} \to \pi^{\pm} K$  branching ratios:
  - Suggests sizeable impact of a hadronic parameter  $ho_{
    m c}.$
  - Constrained through the emerging  $B^{\pm} \to K^{\pm}K$  signal.

No problems for the SM in this sector!

# $\chi^2$ incl**Observables with** *sizeable* impact of EWPs excl.

constraint from ey Observables:  $\rightarrow$  involve EWP parameters q and  $\phi$  ...  $\mathcal{A}_{\rm CP}^{\rm dir}(B^{\pm} \to \pi^{\pm} K)$  $R_{\rm c} \equiv 2 \left[ \frac{\mathsf{BR}(B^+ \to \pi^0 K^+) + \mathsf{BR}(B^- \to \pi^0 K^-)}{\mathsf{BR}(B^+ \to \pi^+ K^0) + \mathsf{BR}(B^- \to \pi^- \bar{K}^0)} \right]$ R $\theta_{\rm c}$  $\rho_{\rm c} =$  $R_{\rm n} \equiv \frac{1}{2} \left[ \frac{{\sf BR}(B^0_d \to \pi^- K^+) + {\sf BR}(\bar{B}^0_d \to \pi^+ K^-)}{{\sf BR}(B^0_d \to \pi^0 K^0) + {\sf BR}(\bar{B}^0_d \to \pi^0 \bar{K}^0)} \right]$ 0.05 0.10exp. range theor. error  $\bullet_a \overset{(\dagger)}{\cap}$  he situation in the  $R_{
m n}$ – $R_{
m c}$  plane:  $\rho_{\rm c}$ 1.6  $\theta_{\rm c}$  $\phi$ =310°  $\mathcal{A}_{\rm CP}^{\rm dir}(B^{\pm} \rightarrow \pi^{\pm} K)$ q = 1.75 $\phi$ =300° exp. region lower 1- $\sigma$  bound 1.4 q = 1.22 $\phi$ =290° upper 1- $\sigma$  bound  $\phi = 280^{\circ}$ lower 1- $\sigma$  bound 1.2 allowed area  $\phi = 2709$  $\mathcal{P}_{c}$ φ=2609 1  $\phi = 80^{\circ}$ SM  $\phi = 90^{\circ}$ 0a 8 q = 0.690.6  $\overset{0.9}{R_{
m n}}$ 0.7 0.8 1.1 1

• Allow for NP in the EW penguin sector:

$$\underbrace{q = 1.08 \stackrel{+0.81}{_{-0.73}}}_{\text{SM} \to 0.69}, \quad \underbrace{\phi = -(88.8 \stackrel{+13.7}{_{-19.0}})^{\circ}}_{\text{SM} \to 0^{\circ}}$$

 $\Rightarrow$  predictions of CPV in  $B^{\pm} \rightarrow \pi^0 K^{\pm}$ ,  $B_d \rightarrow \pi^0 K_{\rm S}$  ...

### Step 3:

### Rare B and K Decays

### $Z^0$ penguins

 $\Rightarrow$  ... several spectacular NP effects!

### **Preliminaries**

- Enhanced  $Z^0$  penguins with a large new complex phase provide an attractive scenario for NP effects in rare and CP-violating K and B decays:
  - Model-independent analyses
  - Studies within particular supersymmetric scenarios ...

[Buras & Silvestrini (1999); Buras, Colangelo, Isidori, Romanino & Silvestrini (2000); Buchalla *et al.* (2001); Atwood & Hiller (2003); Buras, Ewerth, Jäger & Rosiek (2004) ]

- In our analysis, we determine the size of the enhancement of the  $Z^0$ -penguin Inami-Lim function C and the size of its complex phase through the  $B \to \pi K$  data:
  - Performing a renormalization-group analysis yields

$$C(\bar{q}) = 2.35 \,\bar{q}e^{i\phi} - 0.82, \quad \bar{q} = q \left[\frac{|V_{ub}/V_{cb}|}{0.086}\right]$$
(2)

 Evaluating the relevant box-diagram contributions within the SM and using (2), we obtain the SD functions

$$X = 2.35 \, \bar{q} e^{i\phi} - 0.09$$
 and  $Y = 2.35 \, \bar{q} e^{i\phi} - 0.64$ ,

which govern the rare K, B decays with  $\nu \bar{\nu}$  and  $l^+l^$ in the final states, respectively.

[Buras, R.F, Recksiegel & Schwab (2003)]

### **Constraints from Rare Decays**

• Previous 
$$B \rightarrow \pi K$$
 data:

$$\Rightarrow q = 1.75^{+1.27}_{-0.99}, \phi = -(85^{+11}_{-14})^{\circ}$$

$$\Rightarrow |X| \approx |Y| \approx |Z| \approx 4.3^{+3.0}_{-2.4}$$

- |X|: compatible with  $K \to \pi \nu \bar{\nu}$ ,  $B \to X_{s,d} \nu \bar{\nu}$  data.
- |Y|: *violates* the bound  $|Y| \leq 2.2$  following from the BaBar and Belle data for  $B \to X_s \mu^+ \mu^-$ .
- |Z|: too large to be consistent with the data on  $\varepsilon'/\varepsilon$ .
- Consider only those  $(q, \phi)_{B \to \pi K}$  that satisfy |Y| = 2.2:

$$\Rightarrow \quad \bar{q} = 0.92^{+0.07}_{-0.05}, \quad \phi = -(85^{+11}_{-14})^{\circ}$$

- Compatible with all current data on rare decays!
- Nicely compatible with the  $new \ B \to \pi K$  data:

$$\Rightarrow q = 1.08^{+0.81}_{-0.73}, \phi = -(88.8^{+13.7}_{-19.0})^{\circ}.$$

 We may still encounter significant deviations from the SM predictions for rare decays ...

Various *predictions* 

 $\Rightarrow$ 

*Tests* of our NP scenario!

#### **Picture with the Rare-Decay Constraints**

| Quantity    | Old Data      | Prediction with RDs             | New Data        |
|-------------|---------------|---------------------------------|-----------------|
| $R_{ m c}$  | $1.17\pm0.12$ | $1.00\substack{+0.12 \\ -0.08}$ | $1.00 \pm 0.08$ |
| $R_{\rm n}$ | $0.76\pm0.10$ | $0.82\substack{+0.12 \\ -0.11}$ | $0.79\pm0.08$   |

 $\Rightarrow$  data moved accordingly! [see BFRS NPB paper]

• Define CP-violating phases through the following relations:

$$X = |X|e^{i\theta X}, \quad Y = |Y|e^{i\theta Y}, \quad Z = |Z|e^{i\theta Z}$$

$$\begin{split} \beta_X \equiv \beta - \beta_s - \theta_X, \quad \beta_Y \equiv \beta - \beta_s - \theta_Y, \quad \beta_Z \equiv \beta - \beta_s - \theta_Z \\ [\beta: \text{ usual UT angle, } \beta_s = -\lambda^2 \eta = -1^\circ] \end{split}$$

• Short-distance parameters following from our NP analysis:

$$|C| = 2.24 \pm 0.04, \quad \theta_C = -(105 \pm 12)^{\circ}$$
$$|X| = 2.17 \pm 0.12, \quad \theta_X = -(86 \pm 12)^{\circ}, \quad \beta_X = (111 \pm 12)^{\circ}$$
$$|Y| = 2.2 \text{ (input)}, \quad \theta_Y = -(100 \pm 12)^{\circ}, \quad \beta_Y = (124 \pm 12)^{\circ}$$
$$|Z| = 2.27 \pm 0.06, \quad \theta_Z = -(108 \pm 12)^{\circ}, \quad \beta_Z = (132 \pm 12)^{\circ}$$

• SM corresponds to the following values:

$$|C| = 0.79, |X| = 1.53, |Y| = 0.98, |Z| = 0.68$$
  
 $\theta_C = \theta_X = \theta_Y = \theta_Z = 0^\circ$ 

#### Rare Decays $K \rightarrow \pi \nu \bar{\nu}$ (Very Clean!)

• The current experimental picture:

 $\begin{array}{lll} \mathsf{BR}(K^+ \to \pi^+ \nu \bar{\nu}) & = & (14.7^{+13.0}_{-8.9}) \times 10^{-11} & [\mathsf{E949} + \mathsf{E787}] \\ \mathsf{BR}(K_\mathrm{L} \to \pi^0 \nu \bar{\nu}) & < & 5.9 \times 10^{-7} & [\mathsf{KTeV}; \text{ wait for E391a } \dots] \end{array}$ 

• Branching ratios in the SM:

$$\begin{array}{lll}
\mathsf{BR}(K^+ \to \pi^+ \nu \bar{\nu}) \\
\mathsf{BR}(K_{\mathrm{L}} \to \pi^0 \nu \bar{\nu}) \\
\mathsf{SM} &= (8.0 \pm 1.1) \times 10^{-11} \\
\mathsf{SM} &= (3.2 \pm 0.6) \times 10^{-11}
\end{array}$$

• Branching ratios in our NP scenario:

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (7.5 \pm 2.1) \times 10^{-11}$$
$$BR(K_{\rm L} \to \pi^0 \nu \bar{\nu}) = (31 \pm 10) \times 10^{-11}$$

- Pattern is dominantly the consequence of  $\beta_X \approx 111^{\circ}$ :

$$\frac{\mathsf{BR}(K_{\mathrm{L}} \to \pi^{0} \nu \bar{\nu})}{\mathsf{BR}(K_{\mathrm{L}} \to \pi^{0} \nu \bar{\nu})_{\mathrm{SM}}} = \left| \frac{X}{X_{\mathrm{SM}}} \right|^{2} \left[ \frac{\sin \beta_{X}}{\sin(\beta - \beta_{s})} \right]^{2}$$

$$\frac{\mathsf{BR}(K_{\mathrm{L}} \to \pi^{0} \nu \bar{\nu})}{\mathsf{BR}(K^{+} \to \pi^{+} \nu \bar{\nu})} \approx 4.4 \times (\sin \beta_{X})^{2} \approx (4.2 \pm 0.2)$$

-  $BR(K_L \rightarrow \pi^0 \nu \bar{\nu})$  is close to its absolute upper bound: [Grossman & Nir (1997)]

$$\mathsf{BR}(K_{\mathrm{L}} \to \pi^0 \nu \bar{\nu}) \le 4.4 \times \mathsf{BR}(K^+ \to \pi^+ \nu \bar{\nu})$$



- Moreover:
  - In NP scenarios with MFV, which contain also the SM, the  $K \rightarrow \pi \nu \bar{\nu}$  BRs allow a determination of  $\sin 2\beta$ . [Buchalla & Buras (1994)]
  - However, in our NP scenario, we obtain the following:

$$(\sin 2\beta)_{\pi\nu\bar{\nu}} = \sin 2\beta_X = -(0.69^{+0.23}_{-0.41})$$

- On the other hand:  $(\sin 2\beta)_{\psi K_{\rm S}} = +(0.725 \pm 0.037)$ 

 $\Rightarrow \quad (\sin 2\beta)_{\pi\nu\bar{\nu}} \stackrel{\text{MFV}}{=} (\sin 2\beta)_{\psi K_{\text{S}}} \text{ is strongly violated}!$ 

### Other Spectacular NP Effects ...

•  $K_{\rm L} \rightarrow \pi^0 e^+ e^-$ :

– SM  $\rightarrow$  decay is governed by indirect CP violation:

$$\mathsf{BR}(K_{\rm L} \to \pi^0 e^+ e^-) \Big|_{\rm SM} = (3.2^{+1.2}_{-0.8}) \times 10^{-11}$$

[Buchalla, D'Ambrosio & Isidori (2003)]

– NP  $\rightarrow$  decay is governed by direct CP violation:

$$\mathsf{BR}(K_{\rm L} \to \pi^0 e^+ e^-) = (7.8 \pm 1.6) \times 10^{-11}$$

[See also Isidori, Smith & Unterdorfer (2004):  $K_{\rm L} 
ightarrow \pi^0 \mu^+ \mu^-$ ]

• 
$$B_d \to K^* \mu^+ \mu^-$$
:

Integrated forward-backward CP asymmetry [Buchalla et al. ('01)]

$$A_{\mathrm{FB}}^{\mathrm{CP}} = (0.03 \pm 0.01) \times \tan \theta_Y$$

can be very large in view of  $\theta_Y \approx -100^{\circ}$ .

[See also Choudhury, Gaur & Cornell (2004); ...]

•  $B \to X_{s,d} \nu \bar{\nu}$  and  $B_{s,d} \to \mu^+ \mu^-$ :

BRs are enhanced by factors of 2 and 5, respectively, whereas the impact on  $K_{\rm L} \rightarrow \mu^+ \mu^-$  is rather moderate.

- $\varepsilon'/\varepsilon$ :  $\rightarrow$  large hadronic uncertainties [Buras (2003)], but ...
  - Enhanced  $Z^0$  pengs may be important! [Buras & Silvestrini ('99)]
  - Enhanced value of |C| and its large negative phase require a significant enhancement of  $\langle Q_6 \rangle$  with respect to  $\langle Q_8 \rangle$  in order to be consistent with the  $\varepsilon' / \varepsilon$  data!

### Summary & Comments



- Model-independent analysis within our scenario where NP enters the EW penguin sector through enhanced  $Z^0$  penguins with a new CP-violating phase.
- This scenario can be accommodated in the general MSSM. [Buras, Ewerth, Jäger & Rosiek, hep-ph/0408142]
- There are other NP scenarios to address the  $B \rightarrow \pi K$ puzzle, but usually no relation to  $K \rightarrow \pi \nu \bar{\nu}$ ,  $B \rightarrow \mu^+ \mu^-$ . [Barger, Chiang, Langacker and Lee, hep-ph/0406126; ...]

### **Concluding Remarks**

• Flavour physics provides powerful tools to explore the SM:

### - B system:

- \* On the one hand, the current BaBar and Belle data give a picture in impressive agreement with KM!
- \* On the other hand, also potential discrepancies...

 $\rightarrow$  LHCb, super-*B* factory (?)

- K system:
  - \* Governed the stage of CPV for more than 35 years!
  - \* The future lies on rare decays  $\rightarrow$  NA48 @ CERN
- Other important aspects:
  - \* D system: tiny CPV and mixing effects in SM.
  - \* Search for flavour-violating charged-lepton decays...

Crucial to get the *whole* picture!

• In this talk, illustration through a specific strategy:

$$B \to \pi \pi \xrightarrow{SU(3)} B \to \pi K \xrightarrow{Z^0}$$
 rare decays

... can be systematically improved through better data!

• Fruitful interplay with NP searches/discoveries at ATLAS and CMS expected; has to be further explored...