Status of CP Studies in the Higgs Sector at ATLAS

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄ

Markus Schumacher 2nd CPNSH WS, December 2004

 CP studies in H→ZZ→4 leptons in ttH, H→ γγ
 Discovery potential in CPX scenario
 Conclusions

bmb+f - Förderschwerpunkt ATLAS Großgeräte der physikalischen Grundlagenforschung

CP study for H \rightarrow ZZ \rightarrow 4 leptons (Bij, Buszello, Marquard)

for details see: C. Buszellos and P.Marquards talks at 1st CPNSH WS and Eur.Phys.J.C32(04)209 and hep-ph/04106181

general description of interaction btw. boson a. weak gauge bosons

 $\mathcal{L}_{scalar} = \mathbf{X}g^{\mu\nu} + \mathbf{Y}p^{\mu}p^{\nu}/M_h^2 + \mathbf{P}\epsilon_{\mu\nu\rho\sigma}p_1^{\rho}p_2^{\sigma}/M_h^2 \qquad \mathbf{SM: X=1}$

 $\mathcal{L}_{vector} = \mathbf{X}_{\mathbf{V}}(g^{\rho\mu}p_1^{\nu} + g^{\rho\nu}p_2^{\mu}) + \mathbf{P}_{\mathbf{V}}(\epsilon_{\mu\nu\rho\sigma}p_1^{\sigma} - \epsilon_{\mu\nu\rho\sigma}p_2^{\sigma})$

studied in fast simulation, only irreducible ZZ BG considered

rest = 0

Discrimination between pure CP and Spin States

also prel. results from VBF with H→WW→IIvv

sensitive vars.: azimuth angle btw. tagging jets, inv. II-mass

M. Schumacher, CP studies at ATLAS, 2nd CPNSH WS, CERN, December 2004

Measurement of relative couplings of CP mixed scalar

CP study for ttH, H $\rightarrow \gamma\gamma$ (Scott McGarvie)

using ideas from Gunion, He (*PRL 76, 24, 4468 (1996)*)

for details see talk at 1st CPNSH Workshop by Scott

$$\mathcal{L} \equiv \overline{t}(c + id\gamma_5)th$$

c: CP-even coupling = 1 in SM d: CP-odd coupling = 0 in SM

sensitivity of several observables has been compared.

best for now is B4

$$b_4 = \frac{p_t^z p_{\bar{t}}^z}{|\vec{p_t}||\vec{p_{\bar{t}}}|}$$

requires reconstruction of top momenta

plan: try and use "optimal observable"

CP study ttH, $H \rightarrow \gamma \gamma$: parton level

ATLAS TDR: expect ~50 signal events for $M_{H} = 110$ GeV and 300 fb⁻¹

maximum likelihood fit for α to B_4 distributions

$$f(x,\alpha) = \alpha f_{\text{CP-even}}(x) + (1-\alpha)f_{\text{CP-odd}}(x)$$

CP study ttH, H $\rightarrow \gamma\gamma$: from parton to detector level

 > assume 50 selected signal evts :-> increase in width to 25%
 > but currently: efficiency lower by factor 3 w.r.t TDR due to full reconstruction of final state

➢ plans: optimise selection → recover signal efficiency consider backgrounds (with Madgraph, Alpgen, etc.)

The CP violating CPX scenario

Maximise effect \rightarrow CPX scenario (Carena et al., Phys.Lett B495 155(2000)) arg(A_t)=arg(A_b)=arg(M_{gluino})=90 degree, large ratio μ A_t/m_{susy}

> scan of Born level parameters: tan β and M_{H+-}

Phenomenology in the CPX scenario

Overall Discovery Potential: 300 fb⁻¹

ATLAS preliminary at SUSY04 hep-ph/0410112

>border at low tanb for H1 mostly determined by availability of inputs (VBF >110 GeV, ttH and $\gamma\gamma$ > 70 GeV)

> border at low M_{H+-} due to decoupling of H_1 from W,Z and t

LEP uses FeynHiggs (FH) 2.0 and CPH for masses and couplings,

BRs from HZHA

Exclusion plot: conservative result from CPH and FH

ATLAS uses FeynHiggs (FH) 2.1 and CPSUPERH (CSH)

for masses, couplings and branching ratios

The preliminary results from LEP combination

Comparison of theoretical allowed regions

Mass of Lightest Higgs Boson H1

Coupling to Weak Gauge Bosons

Branching ratio H1→bb

Branching ratio H1→*ττ*

Discovery potential: ttH with $H1/2 \rightarrow bb$ M₊ = 178 GeV tanß **Feynhiggs** 30 20 **CPSUPERH** excluded by LEP 10 9 8 M₊=179.3GeV HE 7 6 5 Large difference 4 3 in covered region! 2 theoretically inaccessible CPSUPERH + significant difference theoretically inaccessible FH 2.1 in theoretically 260 280 140 180 220 240 300 100 120 160 200 M_{H+-} (GeV) allowed region

Discovery potential: ttH with H1/2→bb

also difference due to change in M_t,

as discovery potential decreases with increasing Higgs mass

M. Schumacher, CP studies at ATLAS, 2nd CPNSH WS, CERN, December 2004

Discovery potential: VBF with H1/2 \rightarrow \tau\tau

 $M_{t} = 178 \text{ GeV}$

Discovery potential: VBF with H1/2 \rightarrow \tau\tau

Also difference due to change in M_t

Discovery potential in vincinity of "hole"

Conclusions

*Studies concerning CP determination of Higgs bosons a) quite advanced studies in $H \rightarrow ZZ \rightarrow 4$ leptons and VBF, $H \rightarrow WW$ b) progress in ttH, $H \rightarrow \gamma\gamma$ for low mass Higgs, seems promising

◆Discovery Potential in CPXD Scenario

 a) size and location of "hole" depends on assumed M_t / LEP exclusion and program used FH/CSH
 → careful watch assumptions when looking at plots
 b) in any case: should study sensitivity for low mass Higgs H₁ (might be relevant also in other SM extensions e.g. NMSSM)

Thanks for programs and discussions concerning CPX to: Philipp Bechtle, Sven Heinemeyer, Jae Sakis Lee, Tilman Plehn, David Rainwater, Michael Spira, Georg Weiglein...

Discovery potential: VBF with $H1/2 \rightarrow \tau\tau$

 $M_t = 178 \text{ GeV}$

Discovery potential: VBF with H1/2 $\rightarrow \tau \tau$

Also difference due to change in M_t

Experimental Issues

LHC: pp collisions at 14 TeV starting in 2007

first years low lumi. running: > 10 fb⁻¹/yr

then high lumi. running: 100 fb-1/yr \rightarrow 20 overlapping events per bunch crossing

key performance numbers
 obtained from full simulation:
 e.g. efficiencies for trigger,
 b-tag, τ-id, lepton id. and isolation
 forward jets, mass resolutions

- For the second secon
- corrections due to larger total decay width taken into account
- signal overlap/ mass degeneracy of Higgs bosons considered
- discovery = 5 sigma excess using Poissonian statistics
- no systematic uncertainties considered for discovery potential

Experimental Inputs From

channel	lumi	Mass range	Publication
VBF, Η→ττ,WW,γγ	low	M>110 GeV	SN-ATLAS-2003-024
ttH, H→bb	low+high	M>70GeV	ATL-PHYS-2003-003
bbH/A→μμ	low+high	70 <m<135gev< td=""><td>ATL-PHYS-2002-021</td></m<135gev<>	ATL-PHYS-2002-021
		M> 120 GeV	ATL-PHYS-2000-005
bbH/A→ττ: ττ→lep.had	low	M>120GeV	ATL-PHYS-2000-001
ττ →had. Ha d	low	M > 450 GeV	ATL-PHYS-2003-008
gb→tH+-, H→τν,tb	low+high	M >180 GeV	SN-ATLAS-2002-017
tt→bW bH+-, H+-→τν	low	M < 170 GeV	ATL-PHYS-2003-58
Η/Α →ττ	low+high	M > 350 GeV	TDR
A→Zh→llbb, H→hh→γγbb	low+high	60 <ml<130 100<mh<360< td=""><td>TDR TDR</td></mh<360<></ml<130 	TDR TDR
Η→γγ	low+high	M > 70 GeV	TDR
ZZ→4I	low+high	M > 100 GeV	TDR
WW→IvIv	low+high	140 <m <120gev<="" td=""><td>TDR</td></m>	TDR
WH→Ivbb	low	70 <m<130gev< td=""><td>TDR</td></m<130gev<>	TDR

Discovery potential in vincinity of "Hole"

