CP Violations studies at Gamma Gamma Colliders

Mayda M. Velasco Northwestern Univ. Dec. 2, 2004

CPNSH - 2004 CERN

Why gC are important in CP violations?

Well known:

-Ability to manipulate the beam polarization provides an unique opportunities: *i.e.* Measurements of CP admixture (from polarization asymmetries)

$$\Rightarrow (\gamma_{\parallel} \parallel \gamma_{\parallel}) \Rightarrow CP\text{-even} \\ \Rightarrow (\gamma_{\parallel} \perp \gamma_{\parallel}) \Rightarrow CP\text{-odd}$$

-- Complemented in important ways the LC & the LHC program: *i.e.* attractive production mechanism $\Gamma_{\gamma\gamma}$ asymmetries from the decay products

Continue...Why gC are important in CP violations?

- . Well known:
 - -Interference Effects: *i.e. t t-bar & WW*.

- More recently:
 - **.** Interference Effects: *i.e. τ*-*leptons*.
 - . Clean experimental environment for more exotic channels: *i.e.*

 $-\gamma \gamma \rightarrow h_2 \rightarrow h_1 h_1 \quad vs \ \gamma \gamma \rightarrow 2X \ 2Y$ $-\gamma \gamma \rightarrow \tau \tau h_i \quad vs \ \gamma \gamma \rightarrow 2\tau \ 2X$

High event rate expected at a low energy gC: Light SIM Higgs

Machine	$E_{e^+e^-}(\text{GeV})$	$M_{h_{SM}}(\text{GeV})$	Yield/year	Ref.
*CLICHE	150	115	22.5k	hep-ex/0110056
CLICHE	160	120	23.6k	Correct for $\Gamma_{\gamma\gamma}$
#TESLA	160	120	21.0k	hep-ex/0101056
# NLC	160	120	11.0k	hep-ex/0110055

* Is a 10% CLIC TEST MACHINE # DESIGNS @ SNOWMASS

CP violation... Special role for polarization in gC... warning:

 Competitive asymmetry measurements from linearly polarized beams requires different beam and laser parameters, than those discussed so far... That is:

– <u>10 μm laser</u> instead of 1 or 0.3 μm

– increasing beam energy by a factor of a least two

The reason is to get higher degree of linear polarization (higher luminosity for "free").

→Let me explain...

Compton Laser Backscattering Facts

$$E_e + w_o \to E_{e'} + E_\gamma$$

$$x_{max} = \frac{4E_e w_o}{m_e^2}$$

$$E_{\gamma} = \frac{x}{x+1}E_e$$

$$y_{max} = \frac{E_{\gamma}}{E_e}$$

Available:

 $w_o = 1.17(3.53) \ eV$ = 1.0(0.351)µm laser

Circular polarization...

Polarization and Luminosity issues in gC using linear polarization ... requires low x

- $\sqrt{\tau} = E_{\gamma\gamma}/E_{e^+e^-}$, L=luminosity
- (a) assumes 100% polarization of e⁻,
 ± stands for helicity of photons
- (b) assumes 80% polarization of e^-
- (c) assumes 0% polarization of e⁻; need small x to have one of the polarization orientations dominating

For heavier Higgs (>300 GeV), might be best to focus on asymmetries that do not require linear polarization

Linear polarization α ζ₁, ζ₃
 Circular polarization α ζ₂

$$dN = dL_{\gamma\gamma}d\Gamma_{4}^{1}(|M_{++}|^{2} + |M_{--}|^{2})\left\{(1 + \langle \zeta_{2}\widetilde{\zeta}_{2}\rangle) + (\langle \zeta_{2}\rangle + \langle \widetilde{\zeta}_{2}\rangle)\mathcal{A}_{1} + (\langle \zeta_{3}\widetilde{\zeta}_{1}\rangle + \langle \zeta_{1}\widetilde{\zeta}_{3}\rangle)\mathcal{A}_{2} + (\langle \zeta_{3}\widetilde{\zeta}_{3}\rangle - \langle \zeta_{1}\widetilde{\zeta}_{1}\rangle)\mathcal{A}_{3}\right\},$$

Grzadkowski & Gunion (1992)

A₁=A₂=0 if there is no CP admixture

Only in gC can we exploit interference effects to extract phases needed to study CP violations in an effective way

- Exploit interference:
 - W⁺W-, Warsaw & Krawczyk
 - Top pairs, Asakawa et al, Godbole *et al*, Lee *et al*

Large interference effects are expected in the considered mass range

Comments on Complex MSSM: we have MASS and CP Eigenstates

CP Eigenstates ✓ h, H (CP-EVEN) ✓ A (CP-ODD) = 0 Mass Eigenstates M_{h1} < M_{h2} < M_{h3}

$ \begin{pmatrix} n_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{pmatrix} \begin{pmatrix} n \\ H \\ A \end{pmatrix} \equiv U \begin{pmatrix} n \\ H \\ A \end{pmatrix} $	h H A	n H A			$\equiv U$			h H A		$\begin{pmatrix} 13 \\ 23 \\ 33 \end{pmatrix}$	u_1 u_2 u_3	$u_{12} u_{22} u_{32}$	$u_{11} u_{21} u_{31}$		=	$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}$	
---	-------------	-------------	--	--	------------	--	--	-------------	--	--	-------------------	------------------------	------------------------	--	---	---	--

$h_2 \rightarrow h_1 h_1' gC' will do the job...$

Gunion, Szleper

Example: CP violation bigger @ gC than @ LC in bb decay & filling regions difficult @ LHC

We are ready to run whatever...

Input Files

All Snowmass and WMAP parameters calculated with ISAJET V7.69.

Benchmark Point	CPsuperH	FeynHiggs	HDECAY	ISAJET
CPX	CPX_cpsh.in	CPX_fh.in	CPX_hd.in	
SPS1a	SPS1a_cpsh.in	SPS1a_fh.in	SPS1a_hd.in	SPS1a.txt
SPS1b	SPS1b_cpsh.in	SPS1b_fh.in	SPS1b_hd.in	SPS1b.txt
SPS2	SPS2_cpsh.in	SPS2_fh.in	SPS2_hd.in	SPS2.txt
SPS3	SPS3_cpsh.in	SPS3_fh.in	SPS3_hd.in	SPS3.txt
SPS4	SPS4_cpsh.in	SPS4_fh.in	SPS4_hd.in	SPS4.txt
SPS5	SPS5_cpsh.in	SPS5_fh.in	SPS5_hd.in	SPS5.txt
SPS6	SPS6_cpsh.in	SPS6_fh.in	SPS6_hd.in	SPS6.txt
SPS7	SPS7_cpsh.in	SPS7_fh.in	SPS7_hd.in	SPS7.txt
SPS8	SPS8_cpsh.in	SPS8_fh.in	SPS8_hd.in	SPS8.txt
SPS9	SPS9_cpsh.in	SPS9_fh.in	SPS9_hd.in	SPS9.txt
WMAPA	WMAPA_cpsh.in	WMAPA_fh.in	WMAPA_hd.in	WMAPA.txt
WMAPB	WMAPB_cpsh.in	WMAPB_fh.in	WMAPB_hd.in	WMAPB.txt
WMAPC	WMAPC_cpsh.in	WMAPC_fh.in	WMAPC_hd.in	WMAPC.txt
WMAPD	WMAPD_cpsh.in	WMAPD_fh.in	WMAPD_hd.in	WMAPD.txt
WMAPE	WMAPE_cpsh.in	WMAPE_fh.in	WMAPE_hd.in	WMAPE.txt
WMAPF	WMAPF_cpsh.in	WMAPF_fh.in	WMAPF_hd.in	WMAPF.txt
WMAPG	WMAPG_cpsh.in	WMAPG_fh.in	WMAPG_hd.in	WMAPG.txt
WMAPH	WMAPH_cpsh.in	WMAPH_fh.in	WMAPH_hd.in	WMAPH.txt
WMAPI	WMAPI_cpsh.in	WMAPI_fh.in	WMAPI_hd.in	WMAPI.txt
WMAPJ	WMAPJ_cpsh.in	WMAPJ_fh.in	WMAPJ_hd.in	WMAPJ.txt
WMAPK	WMAPK_cpsh.in	WMAPK_fh.in	WMAPK_hd.in	WMAPK.txt
WMAPL	WMAPL_cpsh.in	WMAPL_fh.in	WMAPL_hd.in	WMAPL.txt
WMAPM	WMAPM_cpsh.in	WMAPM_fh.in	WMAPM_hd.in	WMAPM.txt

However... what are we going to do with the current difference between CPSuperH and FeynHiggs?

Ratio

100.1

20.08

0.06

0.04

0.02

ម្តិ.11 ខ្ល

툴0.1

0.09

0.08

0.07

0.06

Table 1: CPX Low Energy Parameters

aneta		$ \mu $		M	pole H^{\pm}	$M_t^{ m pole}$		
5		2000.0		300.0		175		
$m_{\tilde{Q}_3}$	$m_{ ilde{U}_3}$	$m_{ ilde{D}_3}$	$m_{ ilde{L}_3}$	$m_{ ilde{E}_3}$ $ A_t $		$ A_b $	$ A_{\tau} $	
500.0	500.0	500.0	500.0	500.0	1000.0	1000.0	1000.0	
$m_{ ilde{Q}_2}$	$m_{ ilde{U}_2}$	$m_{ ilde{D}_2}$	$m_{ ilde{L}_2}$	$m_{ ilde{E}_2}$	$ M_1 $	$ M_2 $	$ M_3 $	
500.0	500.0	500.0	500.0	500.0	50.0	100.0	1000.0	

Add systematic error due to predictions is the minimum ...

What is next?

τ , τ , τ and more τ

CP violation for <u>Light Higgs</u> in the MSSIM using interference & tau polarization (no need for mass peak)

Scan over MSSM parameters

Predicted change in the tau polarization measureable in regions of parameter space not excluded by LEP

Godbole & Krans

To Do... A proper study with beam distributions and detector simulation!!! Tau polarization in the initial and final state...Should we check what CP info we get ?

Choi, Kalinowski, Lee, Muhlleitner, Spira, Zerwas

- **.** Error on $\Delta(tan \beta) \sim 1$ for $tan \beta > 10$
- All tools available to make the experimental study (h₂→ h₁h₁)

Conclusion > To do List

- Once Benchmarks are selected, we are ready to check how sensitive we are to CP effects from precision measurements of the Higgs Branching ratios and partial widths.
- More important... need to understand how to fully use CP asymmetries, that is not only linear polarization, but also circular polarization... and what this imply on the analysis and experimental conditions.
- t's are a powerful tool so far ignored in experimental studies at gC because a clear mass peak is not possible:
 - Time to change that!
 - Exceptions: $H^{\pm} \& h_2 \rightarrow h_1 h_1$