Non Standard Higgs with ATLAS

Samir FERRAG University of OSLO

> CP violation and Higgs, CERN, 3 Dec 2004

ATLAS studies...

- Little Higgs
- Doubly Charged Higgs in the Left-Right Model
- Radion in Sandrum-Randall model
- Heavy Higgs or no Higgs
- Vector boson scattering at high masses
- Chiral Lagrangien Model
- Lepton Flavour violation in 2 Higgs doublets model type-III
- Invisibly decaying Higgs: VBF,ttH,ZH or WH

The Little Higgs Models

Hierarchy problem through loop corrections to the Higgs Mass: Λ is an uv cut-off

- from the top loop $\delta m_h^2 = \frac{3}{8\pi^2} \lambda_t^2 \Lambda^2$
- from the $W\!/\!Z$ loops $\delta m_h^2 \sim \alpha_w \Lambda^2$.
- from the Higgs loop $\delta m_h^2 \sim \frac{\lambda}{16\pi^2} \Lambda^2$

Arrange new particles from scheme with conbination of symmetry breaking (global, local...) to cancel these effects (Arkani-Hamed, Georgi, Burdman, Schmalz, ...)

Particle Content

① T heavy top (M <~ 2 TeV)</p>

T. Han et al hep-ph/0301040 :Phenomenology of the Little Higgs ModelG. Azuelos et al SN-ATLAS-2004-038:Analysis in ATLAS

Heavy quark T (I)

Couplings: $\lambda_1(iQht_r + fT_Lt_rhh^{\dagger}) + \lambda_2f(T_LT_R)$

Sensitivity to the heavy quark T

 $m_{T} \sim 1 \text{ TeV}$

m_T~ 2.1 TeV

m_T ~ 1 TeV

n Isolated leptons E_t *b*-jet tagging

Heavy Gauge Bosons Z_H, W_H

 W_H , Z_H , A_H arise from $[SU(2) \otimes U(1)]^2$ symmetry

 \rightarrow 2 mixing angles (like θ_W): θ for Z_H

2 isolated electrons minimum of invariant mass=800 GeV

Higgs-Gauge boson couplings

Measurement of $Z_H \rightarrow Zh$ and $W_H \rightarrow Wh$ couplings needed to test model

Extra Higgs Φ^{++}

 $\Phi^{\rm ++}$ produced by WW fusion

Two reconstructed, positively charged leptons

Two jets with PT>15GeV, with Rapidities of opposite sign, Separated in pseudporapidity $(|\eta_1-\eta_2|>5)$

∆⁺⁺:*Physics motivation*

G. Azuelos, K. Benslama and J. Ferland ATL-PHYS-2004-025

L-R symmetric model would be a natural extension of the SM

 \succ SU(2)_L x SU(2)_R x U(1)_{B-L}

- predicts new fermions and new gauge bosons: heavy Majorana neutrinos, W_R
- predicts new Higgs sector
- $\Delta_{R} = (\Delta_{R}^{0}, \Delta_{R}^{+}, \Delta_{R}^{++})$ $\Delta_{L} = (\Delta_{L}^{0}, \Delta_{L}^{+}, \Delta_{L}^{++}) \text{ (if Lagrangian is invariant under } L \leftrightarrow R \text{ symmetry})$ $\phi_{1,2}^{0}, \phi_{1,2}^{\pm}$

Δ^{++} : Production at LHC and decay

 β 's are small in realistic models and Yukawa couplings (to quarks) is << gauge coupling

 $V_L << V_R \qquad g_R \sim g_L$ $v_{L} \leq 9 G e V$ $M_{w_{p}}^{2} \sim g_{R}^{2} (2 v_{R}^{2} + k_{1}^{2})$

Decay:

 $\Delta_{RL}^{++} \rightarrow l^+ l^{++}$ $\Delta_{R,L}^{++} \rightarrow W_{R,L}^{+} h^{+}$

Kinematically Suppressed or disallowed

Left *A*⁺⁺: cross sections

Signals:
$$\Delta_L^{++} \rightarrow \ell^+ \ell^+$$
, $l = e, \mu$

$$\Delta_L^{\scriptscriptstyle ++} o au^+ au^+$$

Mass _{⊉++}	(GeV)	σ (fb) for ν_L =5GeV	σ (fb) for $\nu_L=9$ GeV
	300	1.75	5.68
	400	1.14	3.69
	500	0.77	2.50
	600	0.56	1.82
	700	0.42	1.33
	800	0.32	1.02

<u>Background</u>: $W t \bar{t}$, $W^+W^+(QCD)$, $W^+W^+(EW)$, WZqq, $t \bar{t}$

Background	Number of Events	$\sigma \times BR$ (fb)
$pp \rightarrow W t \bar{t}$	200 000	23
$qq \rightarrow W^+W^+ qq$	100 000	37
$qq \rightarrow WZqq$	27 000	28.6
$qq \rightarrow t\bar{t} P_t \ 10-200 \ GeV$	8 000 000	90 800
$qq \rightarrow t\bar{t} P_t \ 200 \ GeV-\infty$	2 000 000	14 100

The gauge bosons are required to decay leptonically

 $\Delta_L^{++} \to l^+ l^+$

Signal : consider $\Delta_L^{++} \rightarrow \ell^+ \ell^+$, only e or μ (no quarks)

Missing transverse momentum cut

Results are also found for Right Δ ++

Pair Production

Dashed =4 leptons are observed

Full = 3 leptons are observed

Results are also found for Right Δ ++

Radion in Randall-Sundrum model

• 1 extra dimension with non factorizable geometry: $ds^{2} = e^{-2ky}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}, \quad y = r_{c}\phi$ $(k \sim M_{Pl}) \Rightarrow 3D \text{ distances shrink with } y$ 5-D Planck scale $M_{Pl}^{2} = \frac{M_{5}^{3}}{k} (1 - e^{-2kr_{c}\pi})$

New physics scale in SM brane: $\Lambda_{\pi} = M_{pl} e^{-kr_c \pi}$, $kr_c \pi \square 35 \Rightarrow \Lambda_{\pi} \square \text{TeV}$

Phenomenology: (Radion) G. Giudice, R. Rattazzi, J.D. Wells hep-ph/0002178

 -scalar field to stabilize the distance between branes
 Goldberger and Wise (PRL 83 (1999) 4922)
 -coupling similar to Higgs, mixes with Higgs (ξ parameter)
 -narrow width

• Analysis in ATLAS: G.Azuelos et al SN-ATLAS-2002-019 -signal $\phi \rightarrow hh \rightarrow b\overline{b} \tau^+ \tau^-$ and $\phi \rightarrow hh \rightarrow \gamma \gamma b\overline{b}$ -background: $t \overline{t}$, Z + jets, W + jets

• Sensitivity: (30 fb⁻¹)

-1st channel: **1.0** TeV for $m_{\phi} = 600 \text{ GeV}$ -2nd channel: **2.2** TeV (0.6 TeV) for $m_{\phi} = 300$ (600 GeV)

Invisibly decaying Higgs

Motivation:

- Usual decay modes could be suppressed when the Higgs decay is open to new invisible particles
- Estimate the sensitivity to $H \rightarrow$ invisible mode:

$$\xi^{2} = Br(H \to inv) \frac{\sigma_{pp \to H+X}}{\sigma_{pp \to H+X}^{SM}} \qquad \text{With } X = tt, \text{ } W \text{ or } Z, qq$$

Signals:Backgrounds:P. Gagnon ATL-PHYS-2003-011B.P. Kersevan et al ATL-PHYS-2003-028L. Neukermans et al ATL-PHYS-2003-006

 $\begin{array}{ll} pp \rightarrow VH, V = Z, W & ZZ(\ell\ell vv), Zincl., Z \rightarrow vv, WZ(\ell vvv), Wincl, t\bar{t} \rightarrow b\bar{b}, W \rightarrow \ell v \\ pp \rightarrow t\bar{t}H & t\bar{t}Z(Z \rightarrow vv), t\bar{t}, t\bar{t}W(W \rightarrow \ell v), b\bar{b}W(W \rightarrow lv), b\bar{b}Z, (Z / \gamma^* \rightarrow \ell\ell) \\ pp \rightarrow qqH & Zjj, Wjj, QCDjj \end{array}$

Excellent understanding of the kinematics in both signal and backgrounds

Invisibly decaying Higgs:ttH

Cross sections:

Cuts:

Process	Generator	$\sigma \ (\sigma \times BR)$
$t\bar{t}H$	PYTHIA	
$m_H = 100 \text{ GeV}$		$910~{ m fb}$
$m_H = 120 \text{ GeV}$		$520 {\rm fb}$
$m_H = 140 \text{ GeV}$		$320 \mathrm{fb}$
$m_H = 160 \text{ GeV}$		$210 \mathrm{fb}$
$m_H = 200 \text{ GeV}$		100 fb
$t\bar{t}Z, Z \to \nu\nu$	AcerMC	190 fb
$tar{t}$	PYTHIA, HERWIG	$490 \ 000 \ {\rm fb}$
$t\bar{t}W, W \to \ell\nu$	AcerMC	140 fb
$b\bar{b}W, W \to \ell\nu$	AcerMC	73 000 fb
$b\bar{b}Z, Z/\gamma^* \to \ell\ell$	AcerMC	61 400 fb

Process	$t\bar{t}H$	$t\bar{t}Z$	$t\bar{t}$	$t\bar{t}$
	PYTHIA	AcerMC	PYTHIA	HERWIG
Trigger lepton	22%	22%	22%	22%
2 b-jets + 2 jets	5.0%	4.8%	4.9%	5.2%
rec. t-quark (jjb)	2.6%	2.4%	2.4%	2.6%
$m_T^{\ell, E_T} > 120 \mathrm{GeV}$	0.87%	0.93%	$4.1 \cdot 10^{-4}$	$5.2\cdot 10^{-4}$
$E_T > 150 \text{ GeV}$	0.41%	0.53%	$2.3\cdot 10^{-5}$	$3.7 \cdot 10^{-5}$
$\sum p_T^{ m rec} > 250 ~{ m GeV}$	0.40%	0.51%	$2.0 \cdot 10^{-5}$	$3.2 \cdot 10^{-5}$
$\sum R_{\rm jj} < 2.2$	0.28%	0.35%	$7.5 \cdot 10^{-6}$	$1.2 \cdot 10^{-5}$

Sensitivity:

Higgs mass	$\xi^2 [\%](t\bar{t}H)$	ξ^2 [%]($t\bar{t}H$)	ξ^2 [%](VBF)
	all $t\bar{t}$	(lep-had) $t\bar{t}$	
$m_H = 100 \text{ GeV}$	42.2	26.5	12.1
$m_H = 120 \text{ GeV}$	55.7	27.4	10.3
$m_H = 140 \text{ GeV}$	75.4	47.4	9.8
$m_H = 160 \text{ GeV}$	95.6	60.2	9.9
$m_H = 200 \text{ GeV}$	154.3	97.1	10.7

Heavy or no Higgs boson

- There exist models where the Higgs boson can be heavy, in spite of EW precision measurements
 - example:
 - mH can be as large as ~ 500 GeV, in presence of anomalous gauge boson couplings

(O. Nachtmann, hep-ph/0404006)

- Dynamical theories
 - little higgs model: pseudo-Goldstone particle and Higgs triplet
 - top-quark condensation see-saw:

```
(B.A. Dobrescu and C. Hill, Phys. Rev. Lett. 81 (1998) 2634)
```

- new vector-like (i.e. SU(2)W-singlet) quarks $\overline{\chi}_{L,R}$ which mixes with the top quark
 - » similar to heavy T quark in little higgs model
- Higgs is the condensate $\langle \bar{\chi}_R t_L \rangle$, with mass ~ 500-600 GeV
- extended technicolor models
- Chiral Lagrangian model

Vector boson scattering at high mass

- experimentally, gauge boson scattering:
 - competes with gluon fusion mechanism
 - signature of forward jet tagging
 - measure of HVV coupling
 - width saturates for high masses in SM

Perturbative and nonperturbative Higgs signals Adrian Ghinculov and Thomas Binoth hep-ph/9807227

- golden mode: $H \rightarrow ZZ \rightarrow 4\ell$
- at high masses, WZ, WW scattering

Strong Symmetry Breaking

• *WZ* (*I*,*J* = 1,1) scattering in ChL Model, with IAM, with parameters for resonance at 1.2 and 1.5 TeV:

 $qq \rightarrow qq WZ \rightarrow qq jj \ell\ell$

with forward jet tagging, 300 fb⁻¹

A. Miagkov, ATL-PHYS-99-06

GA, superLHC: hep-ph/0204087

Worst case scenario: non-resonant excess \rightarrow W⁺W⁺ scattering, ... need good understanding of backgds.

Chiral Lagrangian Model

 $\boldsymbol{L} \text{ (VB scattering)} = \boldsymbol{a}_{4} \left[Tr \left(V_{\mu} V_{\nu} \right) \right]^{2} + \boldsymbol{a}_{5} \left[Tr \left(V_{\mu} V^{\mu} \right) \right]^{2}$

Expansion in derivatives: ٠

> - with 2 parameters a_4 and a_5 , and appropriate unitarization procedure, any scenario described, with of without resonance

CERN 2000-004 Pelaez, hep-ph/9912224 Pelaez, hep-ph/9609427

Lepton-Flavor Violation in 2HDM-III

2-Higgs Doublet Model, type III:

- 2 neutral scalars \Rightarrow 2 Yukawa couplings to fermions

 $\boldsymbol{L}_{Y} = -f_{ij}\overline{\boldsymbol{\psi}}_{i}\boldsymbol{\psi}_{j}\boldsymbol{\varphi}_{1} - g_{ij}\overline{\boldsymbol{\psi}}_{i}\boldsymbol{\psi}_{j}\boldsymbol{\varphi}_{2}$

- after diagonalisation of mass matrix $M_{ij} = f_{ij} \langle \varphi_1 \rangle + g_{ij} \langle \varphi_2 \rangle$ f_{ij} and g_j are not diagonalised $\Rightarrow LFV$
- Type III: no discrete symmetry (such as requiring up and down quarks to each couple to only one Higgs field) to protect from LFV

Conclusion

Lot of possible SM extension higgses are studied in ATLAS

Little Higgs Model should be tested at the LHC: either we find it or it disappears

 Δ^{++} predicted in the LR Symmetric Model should yield a striking signature at LHC.

Invisible Higgs study is open tool to test non standard higgs

۰.

.