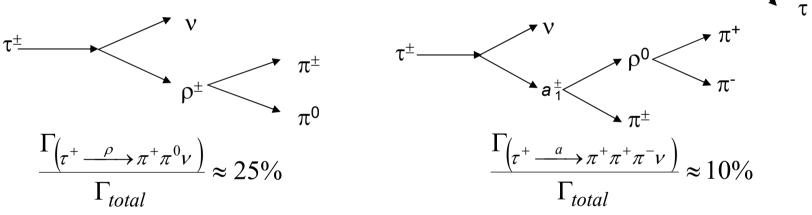
Status of a measurement of the Higgs-Bosons parity at the ILC

A. Imhof¹, K. Desch², T.Kuhl¹, T. Pierzchała³, Z. Wąs⁴, M. Worek³

DESY, ² Univ. Hamburg, ³ Silesia Univ., Katowice, ⁴ Institute for nuc. physics, Krakow


Content:

- The CP-sensitive observable
- The detector simulation
- Selection from SM backgrour
- Todays status of the study
- · Conclusion / outlook

Higgs-parity J^{PC} = 0??

• $h\tau\tau$ - coupling transmits Higgs-parity into spin-polarisation of the τ 's.

• For τ -decays into 2 or 3 pions via ρ -, or a_1 - resonances

- Reconstruct τ -polarisation from the final-states
- Correlate the transverse spin-components

τ decays simulated with Tauola

 H^0 / A^0

The observable

- Planes spanned by the reconstructed 4-momenta of the pions
- Correlation sensitive to Higgs-parity :

the Acoplanarity Φ .

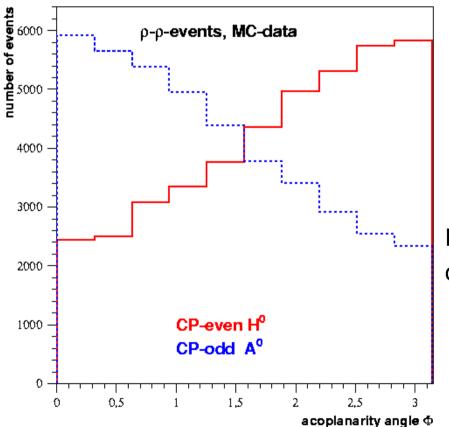
• Use energies to distinguish between Φ and Φ' by the sign of $y_1 \cdot y_2$

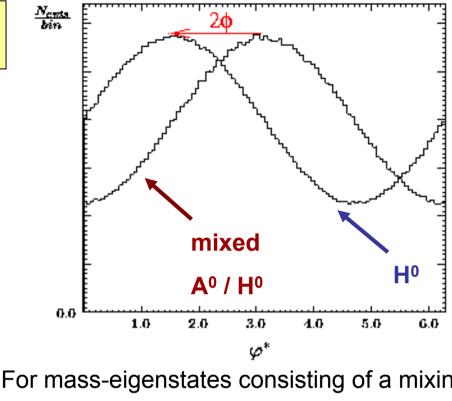
$$y_{1} = \frac{E_{\pi^{+}} - E_{\pi^{0}}}{E_{\pi^{+}} + E_{\pi^{0}}} \qquad \qquad y_{2} = \frac{E_{\pi^{-}} - E_{\pi^{0}}}{E_{\pi^{-}} + E_{\pi^{0}}}$$

 \rightarrow only direct accessible information from reconstructed momenta used

 π^0

 THUS: precise reconstruction of the 4-momenta from (simulated) detector-output necessary. E.g. find the neutral energy (the 2 photons from the π⁰) close to the π[±] and reconstruct the π⁰-momentum.

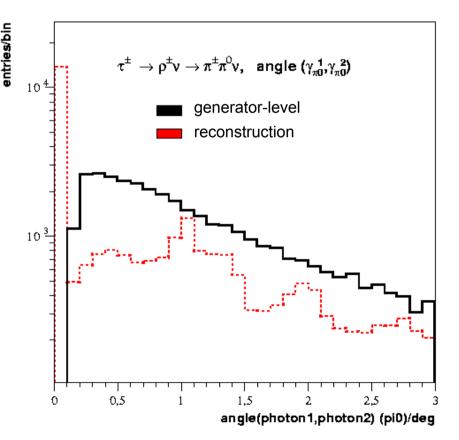

 π^0


ന

0

Theoretical distributions

For mass eigenstates = CP eigenstates:



For mass-eigenstates consisting of a mixin of CP-eigenstates (mixing-angle Φ): \rightarrow phase-shift of 2 Φ in modified acoplanarity-distribution of ϕ^* .

Quality / reliability of the simulation

- Usage of the fast (parameterized) detector simulation SIMDET
- Problem: calorimeter description too much simplified for very specific tasks (mainly done for the sake of CPU-time...)

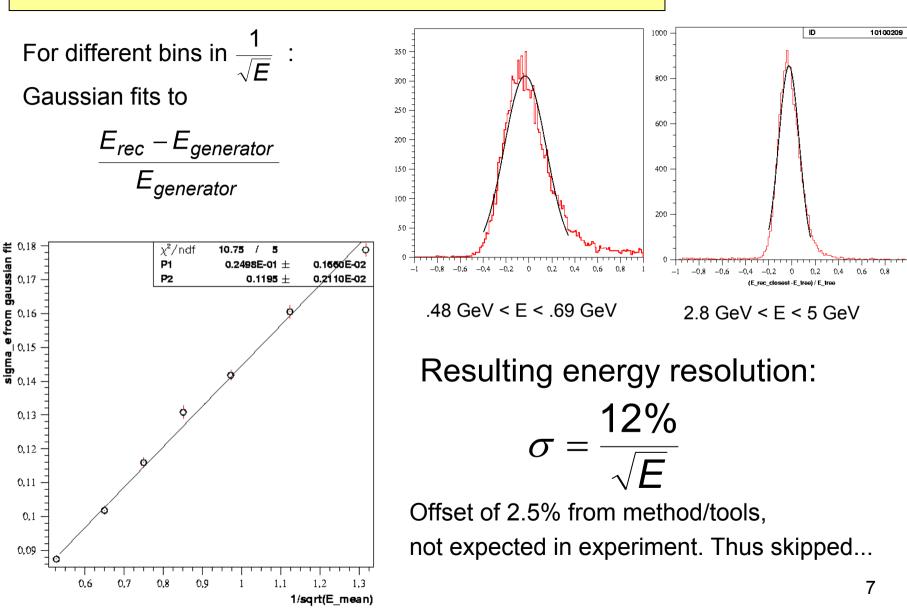
Effect for $\pi^0 \rightarrow \gamma\gamma$:

- artifacts in the position-resolution
- too high separability

(2 at exact the same position on the calorimeter surface are (without e.g. usage of shower-shapes) separately reconstructed.

→ if a realistic precision of the reconstructed 4-momenta of single (neutral) particles is needed, this simulation tool needs improvement !

Task for the simulation-tool

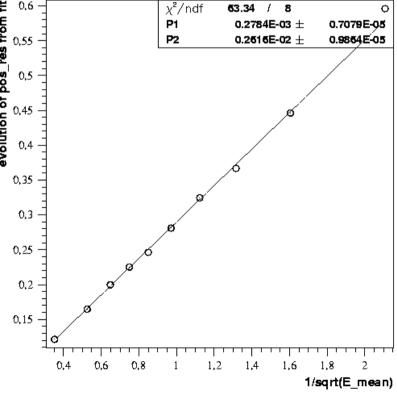

Main question: neutral energy in the ECAL from the photons from e.g. π^0 :

- precision of the reconstruction of
 - the particle energy
 - the position and thus the direction of the momentum
- separability of energy-depositions close to each other
 - neutral close to an other neutral
 - neutral close to a charged energy-deposition
- \rightarrow New parameterization and new simulation routines necessary
 - Extraction of parameters from the GEANT3 based full simulation BRAHMS
 a) isolated photons
 - b) photons close to each other
 - c) photons close to charged objects

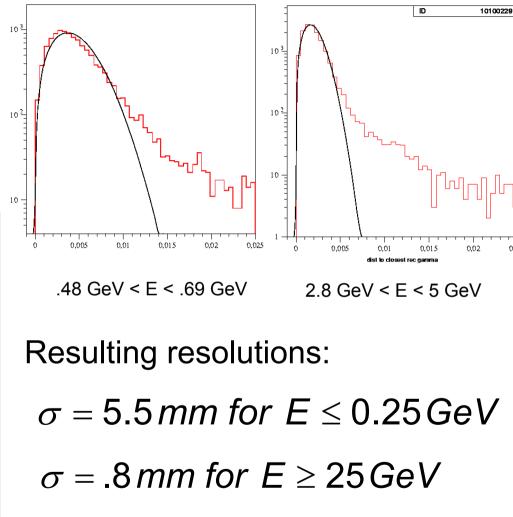
(studied with signal events HZ $\rightarrow \tau^+ \tau^- \nu \nu$ with $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^0 \nu$)

– Implementation of a post processing routine for the simulation

a) Isolated photons: Energy resolution



Position resolution


Fit function:

$$f(x) = a \cdot x \cdot \exp(-b \cdot x^{2})$$

with $b = \frac{1}{2 \cdot \sigma^{2}}$

(1D projection of 2D-Gaussian) ξ_{10}^{-2}

Distance at the calorimeter surface (generator-level to closest reconstructed)

8

b) Photons close to each other

• Probability that 2 photons can be reconstructed separately:

Fraction with $\left| \frac{E_{rec} - E_{generator}}{\sigma_E \cdot \sqrt{E_{generator}}} \right| \le 2$ for different $\Delta_{(\gamma 1, \gamma 2)}$: $2 cm \leq \Delta < 3 cm$ $10 \, cm \leq \Delta < 11 cm$ $5 cm < \Lambda < 6 cm$

Resolvability of 2 photons

Probability to resolve this photon ø Fit scaled to: $P_{resolve} = 0$ for $\Delta < 2$ cm 0,8 $(\sim 2 \cdot \text{Moliere radius})$ $P_{\text{resolve}} = 1 \text{ for } \Delta > 14.5 \text{ cm}$ 0,6 (photons treated as isolated) 0,4 0,2 0

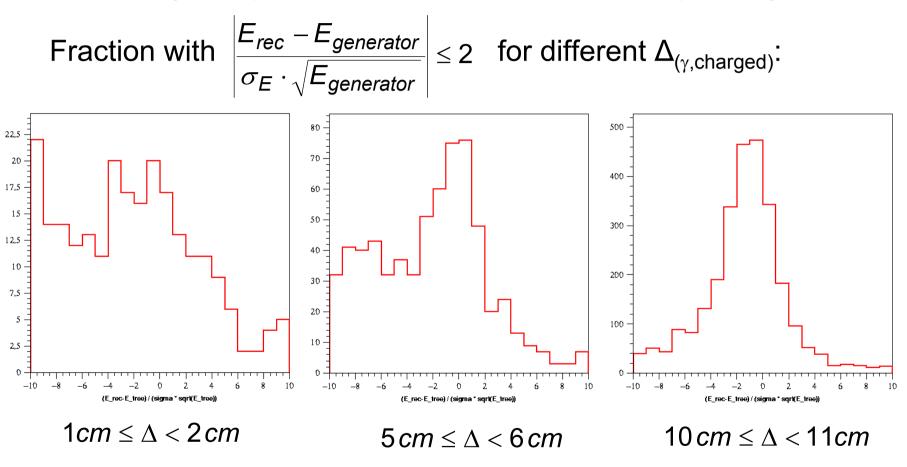
0,02

0,04

0.06

0.08

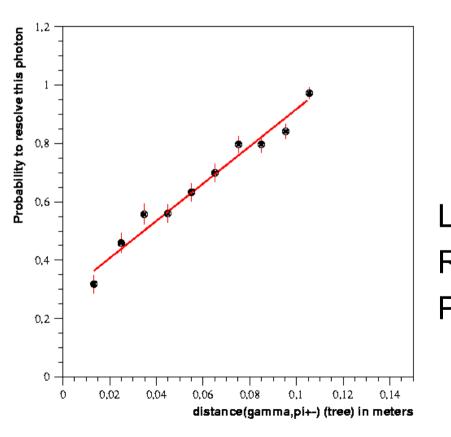
0.1

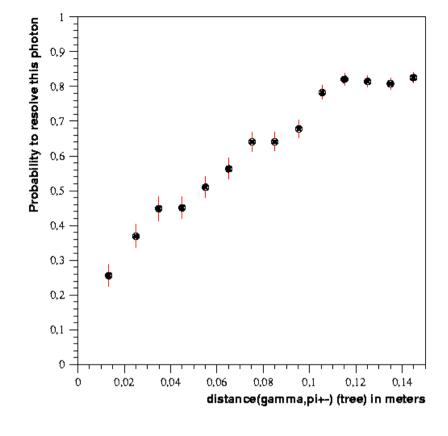

distance(gamma1,gamma2) (tree) in meters

0.12

0.14

c) Photons close to charged objects

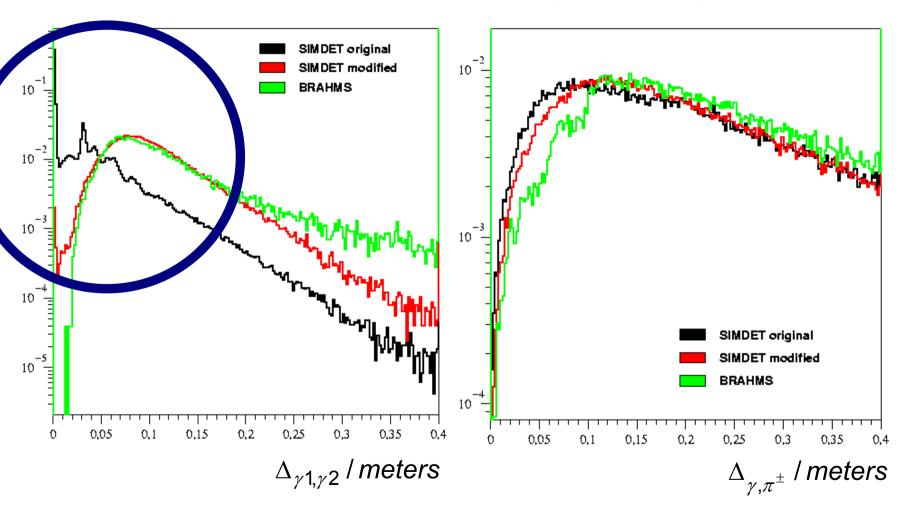

• Probability that photons can be reconstructed separately:



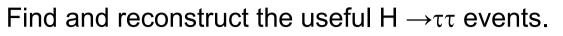
Resolvability
$$\gamma \leftrightarrow \pi^{\pm}$$

Plateau at Δ = 11.5 cm reached \rightarrow Fit scaled to:

$$P_{resolve} = 1$$
 for $\Delta = 11.5$ cm


Linear fit for smaller distances. Resulting in

$$P_{\text{resolve}}$$
 = 28% for Δ = 0 cm.

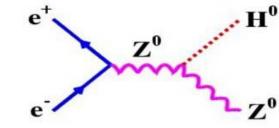

Comparison of old and new detector-output...

Distance at calo surface between 2 rec γ 's

 γ close to charged object (π^{\pm})

Back to the main task

Example: Higgsstrahlung-process at $\sqrt{s} = 350 \, GeV$ and $m_H = 120 \, GeV$


$$\sigma(e^+e^- \to Z^0 H^0) = 0.148 \, pb \qquad \frac{\Gamma(H^0 \to \tau^+ \tau^-)}{\Gamma_{total}} = 9.2\%$$

$$\frac{\Gamma(\tau^{+} \longrightarrow \pi^{+} \pi^{0} \nu)}{\Gamma_{total}} \approx 25\% \qquad \frac{\Gamma(\tau^{+} \longrightarrow \pi^{+} \pi^{-} \nu)}{\Gamma_{total}} \approx 10\%$$

Take all useful combinations of decays together with $Z \rightarrow X$, $X \neq \tau^+ \tau^-$:

~ 1600 events / 1ab⁻¹ available

Also the background has to be taken into account (here full SM-bckg): $Z^{0}Z^{0}$, W⁺W⁻, $e_{i} \gamma \rightarrow e_{i} Z^{0}$, $e_{i} \gamma \rightarrow f_{j} W^{\pm}$, γ/Z^{0} (together ~ 72 * 10⁶ events / 1ab⁻¹) $\gamma \gamma \rightarrow \text{ff O}(10^{10})$, HZ \rightarrow X, X \neq signal (140 k)

Dominate background classes (from now on: $I = e, \mu$):

Signal	Backgrounds	rounds N _{evt} / 1 ab ⁻¹	
	$ZZ \rightarrow \tau \tau \nu \nu$	16 870	
ττ νν	$WW \rightarrow \tau \nu \tau \nu$	155 800	
(~300 evt / 1ab ⁻¹)	$\gamma/Z^* \rightarrow \tau \tau$	2 505 000	
	others like	623 000 (after presel.	
	WW \rightarrow IV τv	140 left, ~ 0.02%)	
ττ ΙΙ (~100 evt / 1ab ⁻¹)	$ZZ \rightarrow \tau\tau \parallel 9024$		
	${f e}_{i}\gamma ightarrow {f e}_{i}{f Z}^{0} ightarrow {f e}_{i} au au$	1 896 000	
	$WW \to qq \ \tau\nu$	1 952 000	
	$WW \rightarrow qq \ l\nu$	3 898 000	
ττ qq	ZZ → ττ qq	65 270	
	$ZZ \rightarrow qq qq$	477 000	
(~1000 evt / 1ab⁻¹)	WW \rightarrow qq τv	1 952 000	
	$WW \rightarrow qq qq$	6 081 000	

Andreas Imhof, DESY

+ HZ \rightarrow X, X \neq signal in all cases

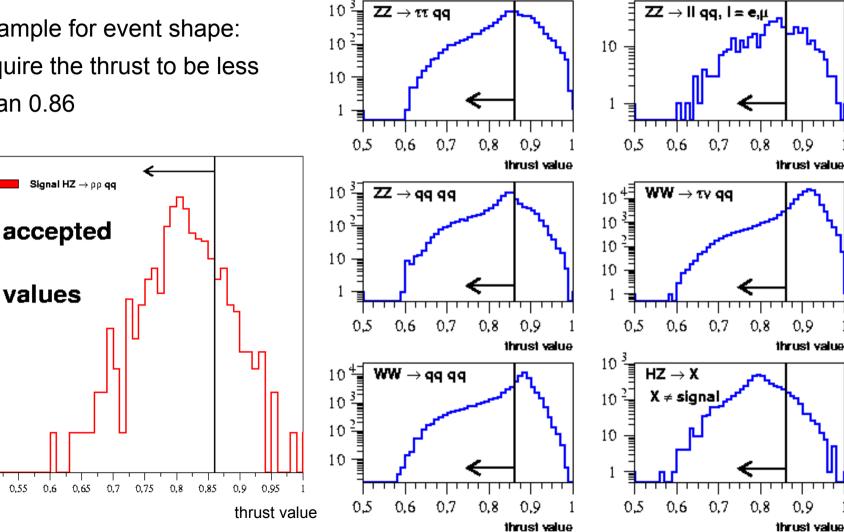
Selection from the SM background

• Cone-based search for τ -candidates

requiring e.g. appropriate invarant mass, isolation to the next track

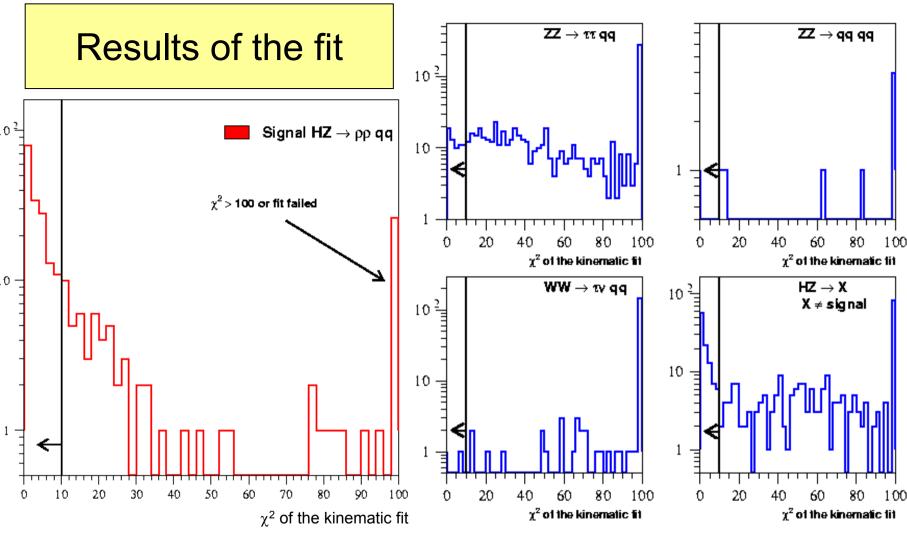
- (Soft) preselection:
 - minimal visible mass (112 GeV)
 - less than full energy detected (< 340 GeV at \sqrt{s} = 350 GeV)
 - at least 1 pair of hadronic τ -candidates, e.g. with
 - angle between the candidates: $77^{\circ} < \alpha < 176^{\circ}$
 - 17 GeV < invariant di-candidate mass < 117 GeV
- This reduces backgrounds with very different topology to a few percent. Example: $e^i \gamma \rightarrow e_i Z^0 \rightarrow e_i$ qq from 13.3*10⁶ to 9100 (~0.07%)
- Following: a few examples of the search for $\tau\tau$ qq final-states:
 - 1. event shape
 - 2. τ candidates and τ -pair candidates
 - 3. hadronic Z-decay
 - 4. kinematic fit to the HZ system

Selection cont.


Example for event shape: require the thrust to be less than 0.86

102

10

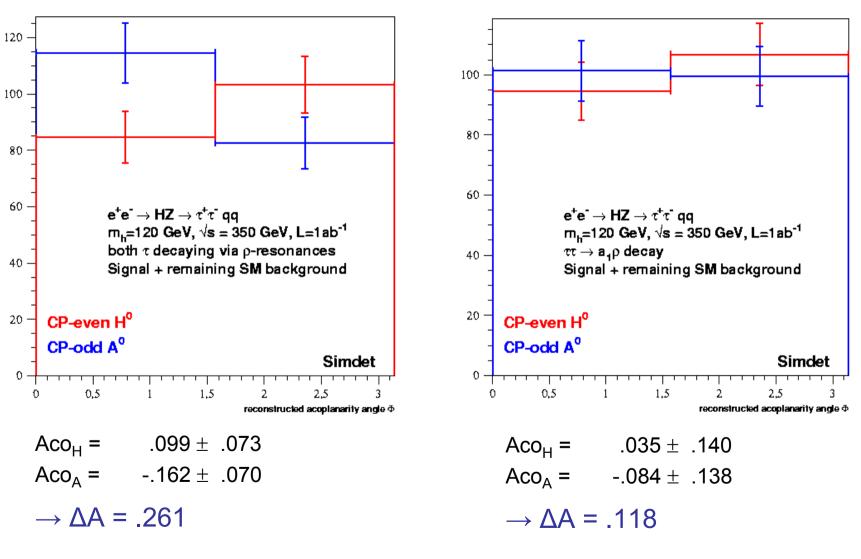

1 🚽

0.5

Kinematic Fit

- $Z \rightarrow qq$ system forced into 2 jets
- Input into the fit:
 - 4-momenta of the hadronic jets
 - 3-momenta of the τ -candidates, used only as directions
 - √s = 350 GeV
- Constraints:
 - invariant mass of the Z^0 system = M_Z = 91.19 GeV
 - invariant mass of the H/A sytem = $M_{H/A}$ = 120 GeV
 - Energy and momentum conservation
- Only those events with a $\chi^2 < 10$ are accepted

Hard but effective cut, rejecting all backgrounds beside ZZ $\rightarrow \tau \tau$ qq and HZ-bckg: N_{Signal} drops from 445 events to 296 (total efficiency drops to 28%), N_{Bckg} from 1368 to 180


Cut-flow for $\tau\tau$ qq search (most relevant)

	Signal	$ZZ \rightarrow \tau \tau qq$	$ZZ \rightarrow qq qq$	WW→qqτν	WW \rightarrow qq qq
N _{evt} / 1 ab ⁻¹	1040	65 270	477 000	1 952 000	6 081 000
preselection	838	12 350	9 373	194 127	67 124
event shape	610	6 051	3 920	8 403	12 056
τ-cand.	503	1 193	25	355	106
Z→qq side	455	803	9	172	18
kin. fit	296	65	/	/	/

Resulting in S / N ~ 3.55 for $\rho\rho$

S / N ~ 1.26 for $a_1 \rho$

Today's status

Selection status for $Z \rightarrow \nu \nu$ and II

- In both cases no kinematic fit implemented (yet)
- Signals with Z $\rightarrow e^+e^-$ or $\mu^+~\mu^-$:
 - also primarily ZZ and HZ backgrounds left
 - $\rho\rho$ -case: S / B ~ 1.2 and Aco_H = .035 ± .140 vs. Aco_A = -.084 ± .138
 - $a_1\rho$ -case: S / B ~ .49 and Aco_H = .143 ± .119 vs. Aco_A = -.028 ± .118
 - deliver each \leq 1 sigma only

•signal efficiency still above 50%, thus still room to play...

- Signals with $Z \rightarrow \nu \nu$:
 - hard to identify from backgrounds
 - at 30% efficiency, still other backgrounds like WW $\!\!\!\rightarrow\!\!\tau\nu\ \tau\nu$ left
 - ρρ -**case**: S / B ~ .77
 - $a_1 \rho$ -case: S / B ~ .35

\rightarrow preliminary status / still some way to go....

Conclusion

- Much more realistic and reliable description for neutral energy deposition in the ECAL implemented
- The signal process is studied including
 - detector effects and
 - the full SM-background statistics
- Preliminary selection strategy shows reasonable results / performance. Especially for decay in ρρ qq
- But there is still quite some room for improvements
- If mixed eigenstates can be determined has to be checked
- But a significance e.g. to distinguish a CP-even from a CPodd Higgs-Boson of more than 3 σ can be expected with improvements and combination of the channels.