Status of a measurement of the Higgs-Bosons parity at the ILC

A. Imhof¹, K. Desch², T.Kuhl¹, T. Pierzchała³, Z. Wąs⁴, M. Worek³

¹ DESY, ² Univ. Hamburg, ³ Silesia Univ., Katowice, ⁴ Institute for nuc. physics, Krakow

Content:

- The CP-sensitive observable
- The detector simulation
- Selection from SM background
- Todays status of the study
- Conclusion / outlook

Higgs-parity J^{PC} = 0??

• $h\tau\tau$ - coupling transmits Higgs-parity into spin-polarisation of the τ 's.

- Reconstruct τ -polarisation from the final-states
- Correlate the transverse spin-components

τ decays simulated with Tauola

The observable

- Planes spanned by the reconstructed
 4-momenta of the pions
- Correlation sensitive to Higgs-parity :

the Acoplanarity Φ .

• Use energies to distinguish between Φ and Φ' by the sign of $y_1 \cdot y_2$

$$y_1 = \frac{E_{\pi^+} - E_{\pi^0}}{E_{\pi^+} + E_{\pi^0}} \qquad \qquad y_2 = \frac{E_{\pi^-} - E_{\pi^0}}{E_{\pi^-} + E_{\pi^0}}$$

 \rightarrow only direct accessible information from reconstructed momenta used

• **THUS:** precise reconstruction of the 4-momenta from (simulated) detector-output necessary. E.g. find the neutral energy (the 2 photons from the π^0) close to the π^{\pm} and reconstruct the π^0 -momentum.

π

π⁰

 π^0

Φ

Theoretical distributions

For mass eigenstates = CP eigenstates:

BUT...

Quality / reliability of the simulation

- Usage of the fast (parameterized) detector simulation SIMDET
- Problem: calorimeter description too much simplified for very specific tasks (mainly done for the sake of CPU-time...)

Effect for $\pi^0 \rightarrow \gamma \gamma$:

- artifacts in the position-resolution

- too high separability

(2 at exact the same position on the calorimeter surface are (without e.g. usage of shower-shapes) separately reconstructed.

→ if a realistic precision of the reconstructed 4-momenta of single (neutral) particles is needed, this simulation tool needs improvement !

Andreas Imhof, DESY

Task for the simulation-tool

Main question: neutral energy in the ECAL from the photons from e.g. π^0 :

- precision of the reconstruction of
 - the particle energy
 - the position and thus the direction of the momentum
- separability of energy-depositions close to each other
 - neutral close to an other neutral
 - neutral close to a charged energy-deposition
- \rightarrow New parameterization and new simulation routines necessary
 - Extraction of parameters from the GEANT3 based full simulation BRAHMS
 - a) isolated photons
 - b) photons close to each other
 - c) photons close to charged objects

(studied with signal events HZ $\rightarrow \tau^{+}\tau^{-}\nu\nu$ with $\tau^{\pm} \rightarrow \rho^{\pm}\nu \rightarrow \pi^{\pm}\pi^{0}\nu$)

Implementation of a post processing routine for the simulation

a) Isolated photons: Energy resolution

b) Photons close to each other

• Probability that 2 photons can be reconstructed separately:

Resolvability of 2 photons

c) Photons close to charged objects

• Probability that photons can be reconstructed separately:

Comparison of old and new detector-output...

Distance at calo surface between 2 rec γ 's

 γ close to charged object (π^{\pm})

Back to the main task

Find and reconstruct the useful $H \!\rightarrow\!\! \tau \tau$ events.

Example: Higgsstrahlung-process at $\sqrt{s} = 350 \, GeV$ and $m_H = 120 \, GeV$

$$\sigma(e^+e^- \to Z^0 H^0) = 0.148 \, pb \qquad \frac{\Gamma_{(H^0 \to \tau^+ \tau^-)}}{\Gamma_{total}} = 9.2\%$$

$$\frac{\Gamma(\tau^{+} \stackrel{\rho}{\longrightarrow} \pi^{+} \pi^{0} \nu)}{\Gamma_{total}} \approx 25\% \qquad \frac{\Gamma(\tau^{+} \stackrel{a}{\longrightarrow} \pi^{+} \pi^{-} \nu)}{\Gamma_{total}} \approx 10\%$$

Take all useful combinations of decays together with $Z \rightarrow X, X \neq \tau^+ \tau^-$:

~ 1600 events / 1ab⁻¹ available

Also the background has to be taken into account (here full SM-bckg): $Z^{0}Z^{0}$, W⁺W⁻, $e_{i} \gamma \rightarrow e_{i} Z^{0}$, $e_{i} \gamma \rightarrow f_{j} W^{\pm}$, γ/Z^{0} (together ~ 72 * 10⁶ events / 1ab⁻¹) $\gamma \gamma \rightarrow \text{ff O}(10^{10})$, HZ \rightarrow X, X \neq signal (140 k)

Statistics

Dominate background classes (from now on: $I = e, \mu$):

Signal	Backgrounds	N _{evt} / 1 ab ⁻¹	
	$ZZ \rightarrow \tau \tau \nu \nu$	16 870	
ττ νν	WW $\rightarrow \tau \nu \tau \nu$	155 800	
(~300 evt / 1ab⁻¹)	$\gamma/Z^* \rightarrow \tau \tau$	2 505 000	
	others like	623 000 (after presel.	
	WW \rightarrow IV τ V	140 left, ~ 0.02%)	
	$ZZ \rightarrow \tau \tau \parallel$	9 024	
ττ II	${f e}_{i}\gamma { ightarrow}{f e}_{i}{f Z}^{0}{ ightarrow}{f e}_{i} au au$	1 896 000	
(~100 evt / 1ab⁻¹)	$WW \to qq \ \tau \nu$	1 952 000	
	WW \rightarrow qq lv	3 898 000	
ττ qq	$ZZ \rightarrow \tau \tau qq$	65 270	
	$ZZ \rightarrow qq qq$	477 000	
(~1000 evt / 1ab ⁻¹)	$WW \to qq \ \tau \nu$	1 952 000	
	$WW \rightarrow qq qq$	6 081 000	

Andreas Imhof, DESY

+ HZ \rightarrow X, X \neq signal in all cases

Selection from the SM background

• Cone-based search for τ -candidates

requiring e.g. appropriate invarant mass, isolation to the next track

- (Soft) preselection:
 - minimal visible mass (112 GeV)
 - less than full energy detected (< 340 GeV at \sqrt{s} = 350 GeV)
 - at least 1 pair of hadronic τ -candidates, e.g. with
 - angle between the candidates: $77^{\circ} < \alpha < 176^{\circ}$
 - 17 GeV < invariant di-candidate mass < 117 GeV

This reduces backgrounds with very different topology to a few percent.

Example: $e^i \gamma \rightarrow e_i Z^0 \rightarrow e_i qq$ from 13.3*10⁶ to 9100 (~0.07%)

Following: a few examples of the search for $\tau\tau$ qq final-states:

- 1. event shape
- 2. τ candidates and τ -pair candidates
- 3. hadronic Z-decay
- 4. kinematic fit to the HZ system

Selection cont.

Example for event shape: require the thrust to be less than 0.86

102

10

1 -

 $ZZ \rightarrow \tau \tau qq$

10 ³

10 -

 $ZZ \rightarrow II qq, I = e_{i}\mu$

10 Ξ

Kinematic Fit

- $Z \rightarrow qq$ system forced into 2 jets
- Input into the fit:
 - 4-momenta of the hadronic jets
 - 3-momenta of the τ -candidates, used only as directions
 - √s = 350 GeV
- Constraints:
 - invariant mass of the Z^0 system = M_Z = 91.19 GeV
 - invariant mass of the H/A sytem = $M_{H/A}$ = 120 GeV
 - Energy and momentum conservation
- Only those events with a $\chi^2 < 10$ are accepted

Hard but effective cut, rejecting all backgrounds beside ZZ $\rightarrow \tau \tau$ qq and HZ-bckg: N_{Signal} drops from 445 events to 296 (total efficiency drops to 28%), N_{Bckg} from 1368 to 180 Andreas Imhof, DESY

Cut-flow for $\tau\tau$ qq search (most relevant)

	Signal	$ZZ \rightarrow \tau \tau qq$	$ZZ \rightarrow qq qq$	WW→qqτν	$WW \rightarrow qq \ qq$
N _{evt} / 1 ab ⁻¹	1040	65 270	477 000	1 952 000	6 081 000
preselection	838	12 350	9 373	194 127	67 124
event shape	610	6 051	3 920	8 403	12 056
τ-cand.	503	1 193	25	355	106
Z→qq side	455	803	9	172	18
kin. fit	296	65	/	/	/

Resulting in S / N ~ 3.55 for $\rho\rho$

S / N ~ 1.26 for $a_1 p$

Today's status

Selection status for $Z \rightarrow vv$ and II

- In both cases no kinematic fit implemented (yet)
- Signals with Z \rightarrow e^+e^- or μ^+ μ^- :
 - also primarily ZZ and HZ backgrounds left
 - $\rho\rho$ -case: S / B ~ 1.2 and Aco_H = .035 ± .140 vs. Aco_A = -.084 ± .138
 - $a_1\rho$ -case: S / B ~ .49 and Aco_H = .143 ± .119 vs. Aco_A = -.028 ± .118
 - deliver each \leq 1 sigma only

•signal efficiency still above 50%, thus still room to play...

- Signals with $Z \rightarrow vv$:
 - hard to identify from backgrounds
 - at 30% efficiency, still other backgrounds like WW $\rightarrow \tau v \tau v$ left
 - ρρ -case: S / B ~ .77
 - $a_1 \rho$ -case: S / B ~ .35

\rightarrow preliminary status / still some way to go....

Conclusion

- Much more realistic and reliable description for neutral energy deposition in the ECAL implemented
- The signal process is studied including
 - detector effects and
 - the full SM-background statistics
- Preliminary selection strategy shows reasonable results / performance. Especially for decay in ρρ qq
- But there is still quite some room for improvements
- If mixed eigenstates can be determined has to be checked
- But a significance e.g. to distinguish a CP-even from a CPodd Higgs-Boson of more than 3 σ can be expected with improvements and combination of the channels.