

Non Standard Model Higgs searches at DØ

Marc Hohlfeld

Johannes Gutenberg–Universität Mainz for the DØ Collaboration

CPNSH Meeting, CERN, 03.12.2004

CPNSH Meeting, 03.12.2004

Marc Hohlfeld

GUTENBERG

Outline

- Introduction
- Tevatron and the DØ detector
- Search for $H \to WW^{(*)}$
- Search for ${\rm H} \to \gamma \gamma$
- Doubly charged Higgs bosons
- Neutral Higgs bosons at high $\tan\beta$
- Summary and outlook

Tevatron

- $p\bar{p}$ collisions at \sqrt{s} = 1.96 TeV
- Peak luminosity $4 8 \cdot 10^{30} cm^{-2} s^{-1}$
- Weekly delivered 8–16 ${
 m pb}^{-1}$

p.3/18

GUTEN

Collider Run II Integrated Luminosity

CPNSH Meeting, 03.12.2004

DØ detector

- 4 layer silicon detector and 8 layer fiber tracker inside solenoid (2T)
- 3 layer muon system up to $|\eta| = 2$
- Liquid argon calorimeter with new electronics
- Preshowers in front of calorimeter
- New trigger and DAQ

Marc Hohlfeld

p.4/18

DØ performance

- Recorded luminosity \sim 500 ${\rm pb}^{-1}$
- Data used for the analyses $\int \mathcal{L}dt = 100 200 \text{ pb}^{-1}$

 Data taking efficiency 80–90%

p.5/18

Selection strategy for $H \to WW \to \ell^+ \nu \ell^- \bar{\nu}$

- Signal characterized by
 - Two leptons of opposite charge
 - ▲ Two neutrinos
 - \Rightarrow Large missing transverse energy
 - ▲ Small opening angle between two charged leptons in transverse plane ⇒ Caused by spin correlations in decay
- Major backgrounds
 - Vector boson pair production
 - Single vector boson production

►
$$Z/\gamma^* \rightarrow ee, Z/\gamma^* \rightarrow \mu\mu, Z/\gamma^* \rightarrow \tau\tau$$

► $W(\rightarrow e, \mu)$ +jets/ γ

- Other backgrounds
 - $t\bar{t}$, QCD, $\Upsilon \rightarrow ee, \mu\mu$

Signal selection for $H \to WW \to \ell^+ \nu \ell^- \bar{\nu}$

- Search for the Higgs in three channels
 - *ee* channel: $\int \mathcal{L}dt = 177 \text{ pb}^{-1}$
 - $e\mu$ channel: $\int \mathcal{L}dt = 158 \text{ pb}^{-1}$
 - \blacktriangle $\mu\mu$ channel: $\int \mathcal{L}dt = 147 \text{ pb}^{-1}$
- Selection criteria
 - Two leptons of opposite charge
 - **Large missing transverse energy** E_T \Rightarrow Rejects Drell Yan, QCD
 - Dilepton mass or transverse mass \Rightarrow Rejects Drell Yan, WW
 - ▲ Jet veto
 - \Rightarrow Rejects $t\bar{t}$
 - Opening angle $\Delta \phi_{\ell\ell}$ \Rightarrow Rejects Drell Yan, WW

$\mu\mu$ channel

Marc Hohlfeld

 $\Delta \phi_{e\mu}$

Data and Monte Carlo comparison

$e^{\pm}\mu^{\mp}$ channel	$t\overline{t}$	WZ	W+jet/ γ	WW	$Z/\gamma^* \to \tau \tau$
Cut 0	3.98 ± 0.08	0.34 ± 0.01	7.24 ± 0.13	$\begin{array}{c} 10.3 {\pm} 0.1 \\ 7.79 {\pm} 0.08 \\ 6.96 {\pm} 0.08 \\ 5.85 {\pm} 0.07 \\ 3.31 {\pm} 0.05 \\ 2.52 {\pm} 0.05 \\ 2.51 {\pm} 0.05 \end{array}$	168 ± 5
Cut 1	3.61 ± 0.07	0.28 ± 0.01	5.02 ± 0.11		27.5 ±1.8
Cut 2	2.86 ± 0.06	0.23 ± 0.01	4.15 ± 0.10		2.43 ±0.54
Cut 3	2.80 ± 0.06	0.21 ± 0.01	1.41 ± 0.06		1.31 ±0.38
Cut 4	1.55 ± 0.05	0.13 ± 0.01	0.94 ± 0.05		0.57 ±0.29
Cut 5	0.64 ± 0.03	0.11 ± 0.01	0.35 ± 0.02		0.27 ±0.19
Cut 6	0.13 ± 0.01	0.11 ± 0.01	0.34 ± 0.02		0.00 ±0.14

	${\rm Z}/\gamma^* ightarrow \mu \mu$	QCD	SUM	DATA
Cut 0 Cut 1 Cut 2 Cut 3 Cut 4 Cut 5	5.21 ± 0.79 1.91 ± 0.46 0.49 ± 0.22 0.21 ± 0.12 0.05 ± 0.05 0.0 ± 0.05	$\begin{array}{c} 25.2 \pm 2.4 \\ 4.17 \pm 0.98 \\ 2.32 \pm 0.73 \\ 1.62 \pm 0.61 \\ 0.92 \pm 0.46 \\ 0.0 \pm 0.23 \end{array}$	$\begin{array}{c} 221 \pm 5 \pm 14 \\ 50.2 \pm 2.1 \pm 3.3 \\ 19.4 \pm 1.0 \pm 1.3 \\ 13.4 \pm 0.8 \pm 0.9 \\ 7.46 \pm 0.55 \pm 0.49 \\ 3.89 \pm 0.31 \pm 0.25 \end{array}$	218 54 21 12 6 4
Cut 6	0.0 ± 0.05	0.0 ± 0.23	$3.10\pm0.28\pm0.20$	2

- Good agreement between data and Monte Carlo after every stage of the selection
- Similar agreement for e^+e^- and $\mu^+\mu^-$ channels

Marc Hohlfeld

p.8/18

Cross section limits

• Expected and observed events

	Background	Data
ee	2.7±0.4	2
$e\mu$	3.1±0.3	2
$\mu\mu$	5.3±0.6	5

- Signal efficiencies
 - \blacktriangle 13%–21% for $\rm M_{H}$ = 160 GeV
 - 6%–11% for $M_{\rm H}$ = 120 GeV
- Signal expectation
 - \blacktriangle 0.27 events for $\rm M_{H}$ = 160 GeV
- Use Likelihood method to calculate limits
- Combine all three channels $\Rightarrow \sigma \times BR(H \rightarrow WW^{(*)}) < 5.7 \text{ pb}$ for $M_H = 160 \text{ GeV}$

GI

Search for $H \rightarrow \gamma \gamma$

- Small branching fraction in Standard Model
- Enhanced branching fraction in non SM scenarios
 - Fermiophobic (no couplings to fermions)
 - Topcolor (Higgs couples to top quark)
- Two photons have clean signature in the detector
- Backgrounds
 - $\blacktriangle \ {\rm Z}/\gamma^* \to ee \text{ with } e \text{ misidentified as } \gamma$
 - ▲ Direct diphoton production
 - Multijet events with jets faking photons
- Integrated luminosity
 - $\int \mathcal{L}dt = 191 \text{ pb}^{-1}$

Run 148830 Event 3510187 Tue May 21 21:28:43 2002

Event selection

- Selection strategy
 - Two high p_T photons
 - Photon identification
 - Shower shape consistent with electromagnetic cluster
 - Track veto
- Cross section limits
 - Counting experiment in mass window
 - Window optimized for different Higgs masses
 - \blacktriangle Width 5–10 GeV for $M_H = 60-150$ GeV
- Main systematics
 - Photon misidentification rate, luminosity

DØ Run II Preliminary

Marc Hohlfeld

Doubly charged Higgs boson

- Many models beyond SM predict doubly charged Higgs bosons
- Some models predict large decay rates into leptons
- Clean signature

- Integrated luminosity
 - $\int \mathcal{L}dt = 113 \text{ pb}^{-1}$
- Dominant background is $\rm b\bar{b}$ production
- Event selection
 - Two or more muons
 - ▲ At least two same sign muons
 - ▲ Small opening angle

Marc Hohlfeld

Limits for doubly charged Higgs bosons

- Background expectation 1.5 ± 0.4 events
- Three events observed in the data
- Signal efficiency $(47.5 \pm 2.5)\%$

 Published in Phys. Rev. Lett. 93:141801, 2004

- Calculate limits using $\rm CL_S$ method
- Assume 100% BR into two muons
- 95% C.L. upper limits
 - ▲ $H_{L}^{\pm\pm}$: $M_{H} > 118.4 \text{ GeV}$ ▲ $H_{R}^{\pm\pm}$: $M_{H} > 98.2 \text{ GeV}$

p.13/18

MSSM neutral Higgs bosons

- Five Higgs bosons in MSSM, three of those Higgs bosons are neutral:h⁰,H⁰,A⁰
- Physics at large $\tan\beta$
 - A^0 nearly degenerate with h^0 or H^0
 - ▲ Enhancement of coupling to down—type fermions
 - ► Production cross section scales as $tan^2 \beta$
 - **Branching fractions:** $b\bar{b} \sim 90\%$, $\tau\tau \sim 10\%$
- Dominant Higgs signature at the Tevatron
 - $\ \, \mathbf{p} \bar{\mathbf{p}} \to \mathbf{b}(\mathbf{b}) \phi \to \mathbf{b}(\mathbf{b}) \mathbf{b} \bar{\mathbf{b}}$
- Three or four b—quarks in final state
- b—tagging important for analysis
- Major backgrounds
 - **4 4 j**, **2b+2j**, **4b**, **Z**(\rightarrow bb)+**2j**, tt

Marc Hohlfeld

Selection strategy

Event selection

- **b**-tagging: events with \geq 3 b-tagged jets
- Peak in invariant di-jet mass
- b-tagging efficiency
 - ▲ 50% efficiency with 2% mistag efficiency for light jets
- Event selection
 - Optimization for jet p_T cuts for various Higgs masses
 - \ge 3 b-tagged jets (secondary vertex) \Rightarrow typical acceptance 0.1–1.5%

p.15/18

Limits

- Integrated luminosity
 - $\int \mathcal{L}dt = 131 \text{ pb}^{-1}$
- Use CL_S method to calculate limits
- Scan $\tan\beta$ for given m_A

Summary

- Conclusion
 - ▲ DØ has performed several non SM Higgs searches
 - ▶ $H \rightarrow WW^{(*)}$ and $H \rightarrow \gamma \gamma$ interpreted in non SM models
 - Doubly charged Higgs bosons
 - Neutral MSSM Higgs bosons
 - ▲ No new physics discovered yet
 - Limits are competitive with LEP
 - Analyses are statistically limited
- Outlook
 - Major improvements due to higher statistics
 - ▲ Factor 2–5 more data already on tape

Trigger for $b\bar{b}\phi$

• Trigger strategy (three Level trigger)

		Old version	New version
Level 1	Tower E_T	$4 \times 5~{\rm GeV}$	$3 \times 5~{ m GeV}$
Level 2	Jet E_T	$3 imes 8 \; {\rm GeV}$	$3 imes 8~{ m GeV}$
	$\sum E_T$	> 50 GeV	> 50 GeV
Level 3	Jet E_T	$3 \times 15~{\rm GeV}$	$2 \times 25~{\rm GeV}$, $1 \times 15~{\rm GeV}$

• Trigger efficiency with respect to offline 68–80% (depending on $\rm M_{\rm H})$

p.18/18