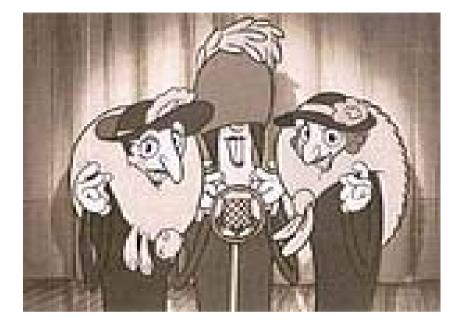

Searching for Higgs Triplets at CDF

Chris Hays, Duke University



CERN Non-SM Higgs Workshop Dec 1-2, 2004

Why Higgs Triplets?

Natural expansion of Higgs sector * frequently arise in models with additional gauge groups Little Higgs Increases scale of divergences by ~10

→ Left-right symmetric $(SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L} \times SU(3)_{c})$ Restore parity symmetry to weak force at scale v_{R} See-saw mechanism for light v masses

Left-right model phenomenology well studied * Excellent reference model for searches

Scenarios with Light Higgs Triplets

Non-supersymmetric left-right models * Triplet masses typically proportional to $\begin{pmatrix} H_R \\ H_R \\ H_R \end{pmatrix} \begin{pmatrix} H_L^{++} \\ H_L \\ H_L^{++} \end{pmatrix}$

 V_{R} If $V_{P} \approx 1$ TeV:

Triplets could be observable at CDF Simplest see-saw mechanism not valid (but could still apply: e.g. add sterile neutrinos)

If $V_{R} \gg 1$ TeV:

Observable triplets requires scalar potential parameter tuning

See-saw mechanism applicable

Scenarios with Light Higgs Triplets

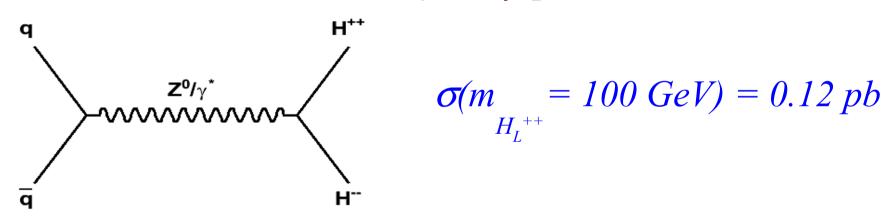
Supersymmetric left-right models

- * Require additional Higgs multiplets or higherdimensional operators (HDO) in the superpotential
- * HDO lead to light doubly-charged Higgs: $m_{H\pm\pm} \approx (V_R^2/M_{Pl})$

See-saw suggests $V_R \sim 10^{10}$ GeV, so $m_{H^{\pm\pm}} \sim 100$ GeV

Gauge-mediated SUSY breaking:

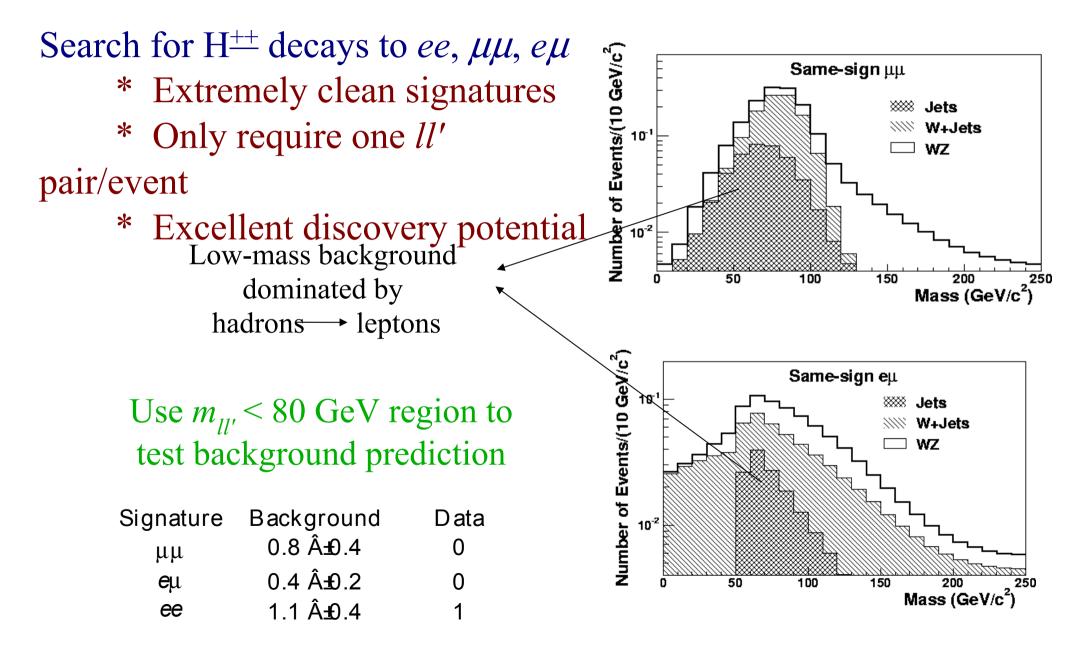
Light H_R^{++}


Gravity-mediated SUSY breaking:

Light H_R^{++}

Also: HDO models require R-parity conservation

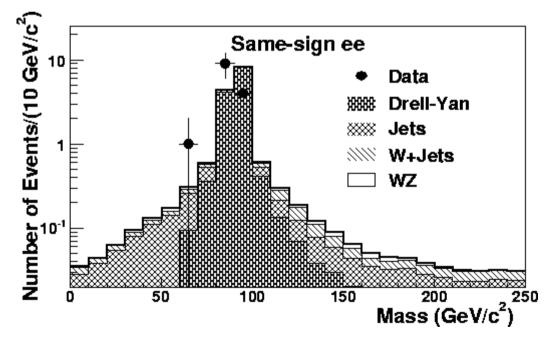
 $p\overline{p}$ production cross section dominated by Z/ γ exchange


- * Completely determined by weak coupling
- * W Higgstrahlung cross section depends on V_L , constrained by the ρ parameter to be small

Expect H^{++} to decay exclusively to leptons

- * No quark couplings due to charge conservation
- * W^+W^+ decay constrained by ρ parameter

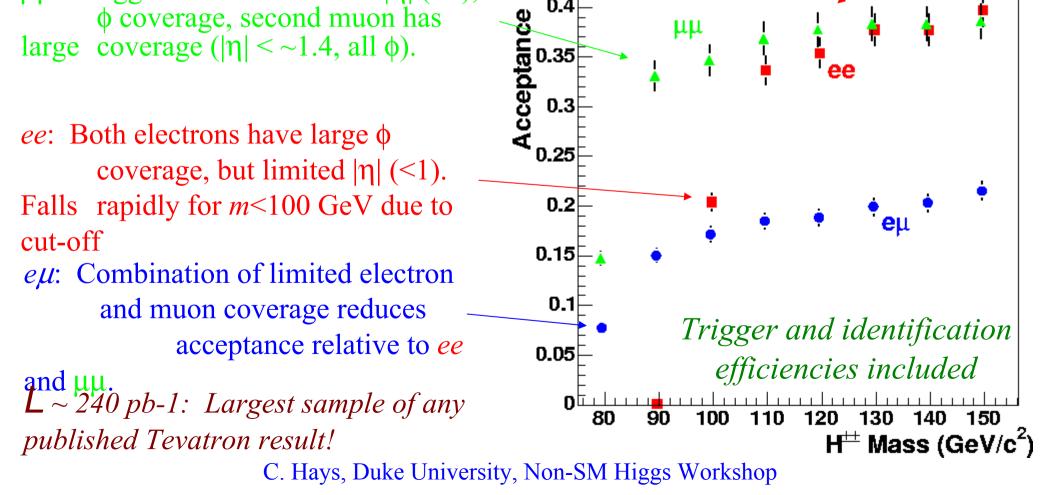
 $L_{Y} = ih_{ij}(\psi_{Li} \tau_{2}H_{L}\psi_{Lj} + \psi_{Ri} \tau_{2}H_{R}\psi_{Rj})$ Violates lepton number; C. Hays, Duke University, Non-SM Higgs Workshop


Test hadron \rightarrow lepton predictions using low $\not{\mathbb{E}}_{T}$ (<15 GeV) same-sign events with one lepton failing identification criteria

Sample dominated by dijet events

Same sign *ee* channel complicated by bremstrahlung in silicon detector

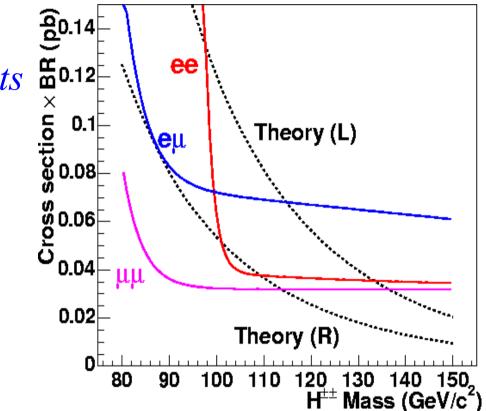
- * Bremstrahlung can convert to two electrons, one of which has the opposite sign of the prompt electron
- * Can result in wrong sign identification Drell-Yan a significant background Search only in region $m_{ee} > 100 \text{ GeV}$


Signature	Background	Data
μμ	7.6 ±3.1	8
e μ + μ e ∕	2.4 ±0.8	2
ee	54 ±21	63

0.4

Luminosity and acceptance key to sensitivity * <1 event background means cross section limit is directly proportional to luminosity and acceptance Very high acceptances!

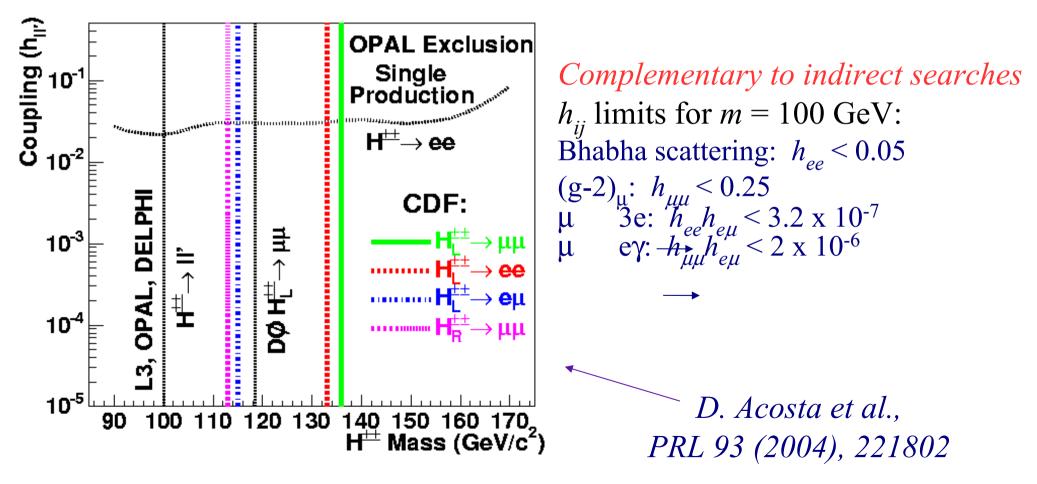
μμ: Trigger muon has limited $|\eta|$ (<1), large coverage ($|\eta| < \sim 1.4$, all ϕ).



No events observed in signal regions

Set 95% C.L. cross section x BR limits

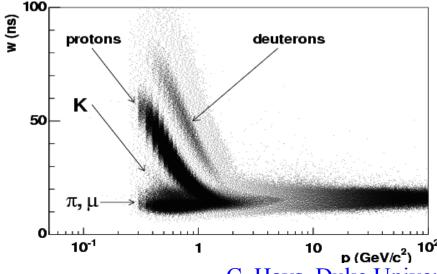
Assuming exclusive decays to a given channel, set mass limits:


 $\begin{array}{c} H_L^{\pm\pm} \longrightarrow \mu\mu: \ m > 136 \ GeV \\ H_L^{\pm\pm} \longrightarrow e\mu: \ m > 115 \ GeV \\ H_L^{\pm\pm} \longrightarrow ee: \ m > 133 \ GeV \\ H_R^{\pm\pm} \longrightarrow \mu\mu: \ m > 113 \ GeV \\ \end{array}$

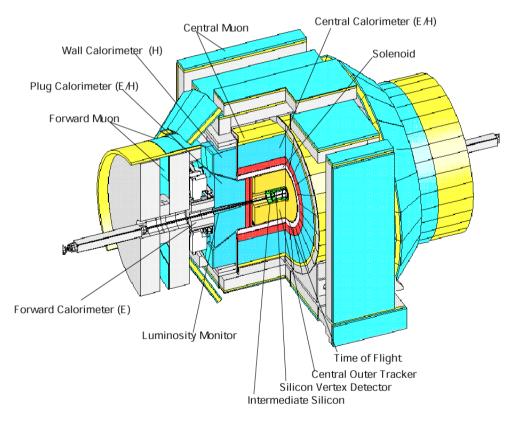
For diagonal couplings of equal magnitude, results correspond to the following approximate limit:

 $H_L^{\pm\pm}$: m > 120 GeV

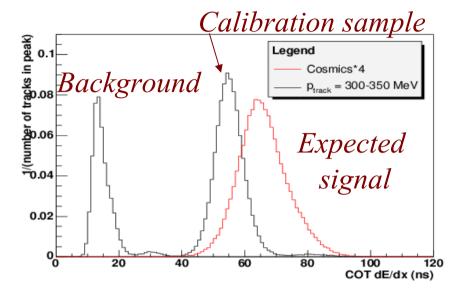
Mass limits highest in the world for $H_L^{\pm\pm}$ in these channels * Sensitive to a wide range of Yukawa coupling values $10^{-5} < \Sigma h_{ij} < 0.5$



C. Hays, Duke University, Non-SM Higgs Workshop


CDF has also searched for quasi-stable H^{±±} * Probes low Yukawa coupling values $\Sigma h_{ij} < 10^{-8}$

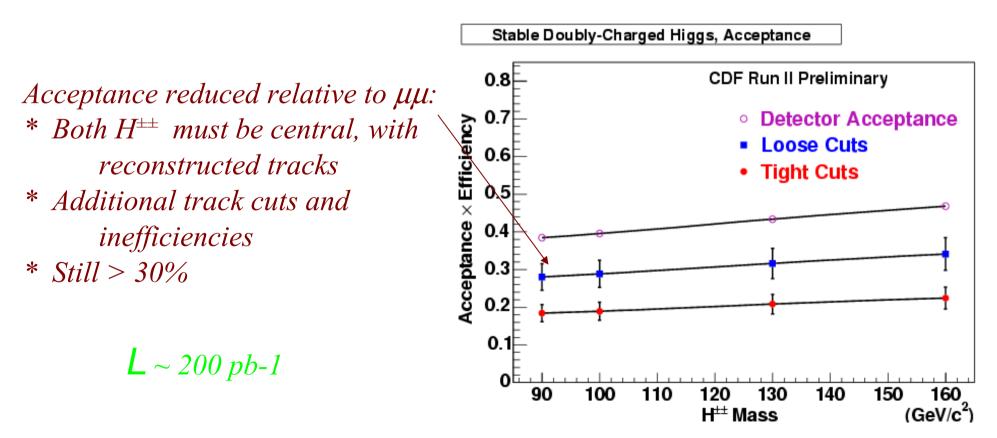
Strategy:


Use dE/dx information from tracker Search for pairs of high-momentum doubly-charged tracks Define tight "discovery" selection including calorimeter ionization

Couplings don't exist for additional triplets that conserve lepton number

dE/dx resolution provides many σ separation of signal and background

Background < 10⁻⁵ *Single-event discovery!*


Signal confirmation defined *a priori Require large MIP energy in calorimeter Further suppresses muon backgrounds*

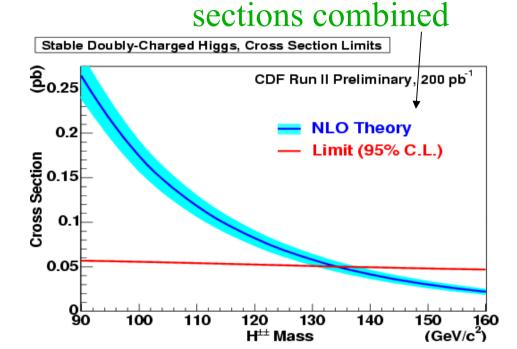
Backgrounds studied with data and MC

Background	dE/dx only	dE/dx + MIP	No candidates in samples used to
Z→μμ	< 10 ⁻⁶	< 10 ⁻¹²	determine acceptance
Z→æ	< 10 ⁻⁶	< 10 ⁻⁷	
$Z \rightarrow \tau \tau$	< 10 ⁻⁹	< 10 ⁻⁹	Yields upper limits on expected
Dijets	< 10 ⁻⁵	< 10 ⁻⁶	background

Acceptance has additional inefficiencies and uncertainties (beyond $\mu\mu$)

- * Fraction of $H^{\pm\pm}$ with β too small to reconstruct tracks
- * Multiple scattering affecting track matching to muon track segment
- * Ionization affecting calorimeter isolation requirements

C. Hays, Duke University, Non-SM Higgs Workshop


Left and right cross

No events observed in data

Set 95% C.L. cross section limit

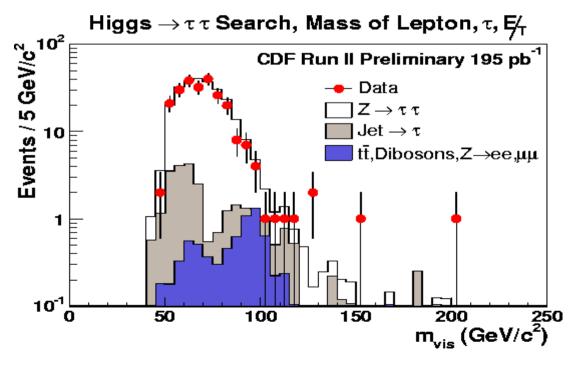
Infer mass limits:

 $\begin{array}{ll} H_L^{\pm\pm}: & m > \sim 125 \; GeV \\ H_R^{\pm\pm}: & m > \sim 100 \; GeV \end{array}$

Limits similar to $\mu\mu$ and *ee* decay channels

Sensitivity will improve with order of magnitude increase in luminosity: $H_L^{\pm\pm}$: $m \sim 200 \text{ GeV}$ $H_R^{\pm\pm}$: $m \sim 170 \text{ GeV}$

Ongoing $H^{\pm\pm}$ Search at CDF


Same-sign tau decays

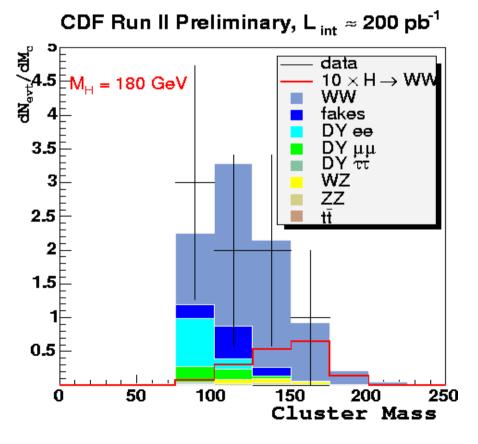
Experimentally challenging:

- * Cannot fully reconstruct invariant mass
- * Hadronic tau decays difficult to detect

Phenomenologically interesting: * $h_{\tau\tau}$ coupling the least constrained

Studying issues of sign identification

Determining backgrounds for same-sign sample


C. Hays, Duke University, Non-SM Higgs Workshop

Other Possible Triplet Searches at CDF

 H^{\pm} :

- * Experimentally accessible
- * No quark couplings if no mixing with Higgs doublet

Same final state as $H^0 \rightarrow WW$ search

Can reoptimize for leptons from H[±] decays

NLO cross section would help in full analysis

Other Possible Triplet Searches at CDF

 $H^{\pm\pm}, H^{\pm}$:

- * Existing searches have sensitivity
- * Signatures depend on NLSP

$$\begin{split} \chi_{1}^{\ 0} &: \widetilde{H}^{\pm\pm} \longrightarrow \widetilde{ll'} \longrightarrow l \widetilde{\chi}_{1}^{\ 0} l' \longrightarrow l \chi^{0} \gamma \chi^{0} l' \\ & Final \ state \ lll'l' \gamma \gamma \qquad E_{T} \\ state \ ll \gamma \gamma E_{T} \\ l: \ H^{\pm\pm} \longrightarrow ll' \longrightarrow l \chi^{0} l' \\ & Final \ state \ lll'l' E_{T} \end{split}$$

 $\tilde{H}^{\pm} \rightarrow l V \rightarrow l \chi_{1}^{0} V \rightarrow l \chi^{0} \gamma \chi^{0} V$, Final $\rightarrow H^{\pm} lv l\chi^{0}v$ Final state llE_{τ}

Need to validate MC generators, use for optimization and acceptance determination

NLO cross section would help

Summary

Higgs triplets a likely component of non-SM Higgs sector Arise in well-motivated models

Doubly-charged Higgs searches particularly attractive Accessible to colliders in a number of scenarios Extremely clean signatures: excellent discovery potential

CDF has world's highest mass limits for long-lived $H^{\pm\pm}$ and decays to ee, eµ, µµ Ongoing data-taking will significantly extend sensitivity

Still early in Run 2!

Potential for a range of additional triplet searches Need to determine sensitivity (cross sections, acceptances) C. Hays, Duke University, Non-SM Higgs Workshop